OpenCore

Reference Manual (0.0.3.4)
[2019.08.11]

Copyright ©2018-2019 vit9696

Contents

[I.1 Generic Terms|

[2_OverviewConliguration)
[2.1 _Configuration Terms| o

2.2 onfiguration Processing|. L e e e e e e
2.3 Configuration Structure]l L e e e

3 Setup]
3.1 Directory Structure]. e e e e
B.2 Installation and Upgrade|. o o
B3 _Contributionl e e e

4 —ACPIl

4. Properties| L e e e e e
4.3 Add Properties| L e
4.6 Quirks Properties|. L e

|5 Eooter|

O.1 Introduction|. Lo e
5.2 roperties|o L e e e e
0.3 Quirks Properties|. oo

. ock Properties| L
[7.5 Emulate Properties| e
7.6 Patch Properties| e
7.7 Quirks Properties|. e

8 Miscl

8.2 Properties| e
3.3 oot Properties|. L L e e e e e e
8.5 Security Properties| e
[3-6 Feels-Entry Properties| oo oo

9 NVRAM

9. Properties| e e e e e e e

2 Properties| e e e e e e

I11.3 Protocols Properties| e
I11.4 Quirks Properties|. e e

{12 Troubleshooting|
112.1 Windows support| o e e e
12.2 Debugging]. e e e e e

12.3 Tips an 1CKS| . o o

w W

ENEEN f o= (S BTN

i == =]

13
13
13
18
18
18
20

22
22
22
22
25
27

28
28
28

39
39
39
40
41

1 Introduction

This document provides information on [OpenCore user configuration file format used to setup the correct functioning
of macOS operating system.

1.1 Known defects

For OpenCore issues please refer to |Acidanthera Bugtracker.

https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/bugtracker

2 Generic Terms

1.1

Generic Terms

plist — Subset of ASCII Property List format written in XML, also know as XML plist format version
1. Uniform Type Identifier (UTI): com.apple.property-list. Plists consist of plist objects, which are
combined to form a hierarchical structure. Due to plist format not being well-defined, all the definitions of this
document may only be applied after plist is considered valid by running plutil -lint. External references:
https://www.apple.com/DTDs/PropertyList-1.0.dtd, man plutil.

plist type — plist collections (plist array, plist dictionary, plist key) and primitives (plist string,
plist data, plist date, plist boolean, plist integer, plist real).

plist object — definite realisation of plist type, which may be interpreted as value.
plist array — array-like collection, conforms to array. Consists of zero or more plist objects.

plist dictionary — map-like (associative array) collection, conforms to dict. Consists of zero or more plist
keys.

plist key — contains one plist object going by the name of plist key, conforms to key. Consists of
printable 7-bit ASCII characters.

plist string — printable 7-bit ASCII string, conforms to string.

plist data — base64-encoded blob, conforms to data.

plist date — ISO-8601 date, conforms to date, unsupported.

plist boolean — logical state object, which is either true (1) or false (0), conforms to true and false.

plist integer — possibly signed integer number in base 10, conforms to integer. Fits in 64-bit unsigned integer
in two’s complement representation, unless a smaller signed or unsigned integral type is explicitly mentioned in
specific plist object description.

plist real — floating point number, conforms to real, unsupported.

plist metadata — value cast to data by the implementation. Permits passing plist string, in which case
the result is represented by a null-terminated sequence of bytes (aka C string), plist integer, in which case
the result is represented by 32-bit little endian sequence of bytes in two’s complement representation, plist
boolean, in which case the value is one byte: 01 for true and 00 for false, and plist data itself. All other
types or larger integers invoke undefined behaviour.

2 OverviewConfiguration

2.1 Configuration Terms

e 0C config — OpenCore Configuration file in plist format named config.plist. It has to provide extensible
way to configure OpenCore and is structured to be separated into multiple named sections situated in the root
plist dictionary. These sections are permitted to have plist array or plist dictionary types and are
described in corresponding sections of this document.

e valid key — plist key object of OC config described in this document or its future revisions. Besides explicitly
described valid keys, keys starting with # symbol (e.g. #Hello) are also considered valid keys and behave as
comments, effectively discarding their value, which is still required to be a valid plist object. All other plist
keys are not valid, and their presence yields to undefined behaviour.

e valid value — valid plist object of OC config described in this document that matches all the additional
requirements in specific plist object description if any.

e invalid value — valid plist object of OC config described in this document that is of other plist type,
does not conform to additional requirements found in specific plist object description (e.g. value range), or
missing from the corresponding collection. Invalid value is read with or without an error message as any
possible value of this plist object in an undetermined manner (i.e. the values may not be same across the
reboots). Whilst reading an invalid value is equivalent to reading certain defined valid value, applying
incompatible value to the host system may yield to undefined behaviour.

e optional value — valid value of OC config described in this document that reads in a certain defined manner
provided in specific plist object description (instead of invalid value) when not present in 0C config. All
other cases of invalid value do still apply. Unless explicitly marked as optional value, any other value is
required to be present and reads to invalid value if missing.

e fatal behaviour — behaviour leading to boot termination. Implementation must stop the boot process from
going any further until next host system boot. It is allowed but not required to perform cold reboot or show any
warning message.

e undefined behaviour — behaviour not prescribed by this document. Implementation is allowed to take any
measures including but not limited to fatal behaviour, assuming any states or values, or ignoring, unless these
measures negatively affect system security in general.

2.2 Configuration Processing

0C config is guaranteed to be processed at least once if it was found. Depending on OpenCore bootstrapping
mechanism multiple 0C config files may lead to reading any of them. No 0C Config may be present on disk, in which
case all the values read follow the rules of invalid value and optional value.

0C config has size, nesting, and key amount limitations. 0C config size does not exceed 16 MBs. OC config has no
more than 8 nesting levels. 0C config has up to 16384 XML nodes (i.e. one plist dictionary item is counted as a
pair of nodes) within each plist object.

Reading malformed 0C config file leads to undefined behaviour. Examples of malformed OC config cover at least
the following cases:

o files non-conformant to plist DTD
e files with unsupported or non-conformant plist objects found in this document
o files violating size, nesting, and key amount limitations

It is recommended but not required to abort loading malformed 0C config and continue as if no 0C config was
present. For forward compatibility it is recommended but not required for the implementation to warn about the use of
invalid values. Recommended practice of interpreting invalid values is to conform to the following convention
where applicable:

Type Value
plist string Empty string (<string></string>)
plist data Empty data (<data></data>)

Type Value

plist integer 0 (<integer>0</integer>)
plist boolean False (<false/>)
plist tristate False (<false/>)

2.3 Configuration Structure

0C config is separated into following sections, which are described in separate sections of this document. By default it
is tried to not enable anything and optionally provide kill switches with Enable property for plist dict entries. In
general the configuration is written idiomatically to group similar actions in subsections:

e Add provides support for data addition.

e Block provides support for data removal or ignorance.
e Patch provides support for data modification.

e Quirks provides support for specific hacks.

Root configuration entries consist of the following:

« [ACPT|

» [Booterl

e DeviceProperties
e Kernel

 [Misc]

 [NVRAM

e PlatformInfo
 [UEET]

Note: Currently most properties try to have defined values even if not specified in the configuration for safety reasons.
This behaviour should not be relied upon, and all fields must be properly specified in the configuration.

3 Setup

3.1 Directory Structure

 Tool.cfi

Figure 1. Directory Structure

When directory boot is used the directory structure used should follow the description on [Directory Structure| figure.
Available entries include:

e BOOTx64.efi

Initial booter, which loads OpenCore.efi unless it was already started as a driver.
e ACPI

Directory used for storing supplemental ACPI information for section.
e Drivers

Directory used for storing supplemental UEFI drivers for section.
o Kexts

Directory used for storing supplemental kernel information for Kernel section.
e Tools

Directory used for storing supplemental tools.
e OpenCore.efi

Main booter driver responsible for operating system loading.
e vault.plist
Hashes for all files potentially loadable by 0C Config.
e config.plist
0C Config.
e vault.sig
Signature for vault.plist.
e nvram.plist
OpenCore variable import file.

o opencereopencore-YYYY-MM-DD-HHMMSS .togtxt
OpenCore log file.

3.2 Installation and Upgrade

To install OpenCore reflect the [Configuration Structure] described in the previous section on a EFI volume of a GPT
partition. While corresponding sections of this document do provide some information in regards to external resources
like ACPI tables, UEFI drivers, or kernel extensions (kexts), completeness of the matter is out of the scope of this
document. Information about kernel extensions may be found in a separate Kext List document available in OpenCore
repository. Vaulting information is provided in [Security Properties|section of this document.

0C config, just like any property lists can be edited with any stock textual editor (e.g. nano, vim), but specialised
software may provide better experience. On macOS the preferred GUI application is Xcode. For a lightweight
cross-platform and open-source alternative ProperTree editor can be utilised.

For BIOS booting a third-party UEFI environment provider will have to be used. DuetPkg is one of the known UEFI
environment providers for legacy systems. To run OpenCore on such a legacy system you can install DuetPkg with a
dedicated tool: BootInstall.

For upgrade purposes refer to Differences.pdf document, providing the information about the changes affecting
the configuration compared to the previous release, and Changelog.md document, containing the list of modifications
across all published updates.

3.3 Contribution

OpenCore can be compiled as an ordinary EDK II. Since UDK] development was abandoned by TianoCore, OpenCore
requires the use of EDK II Stable. Currently supported EDK II release (potentially with patches enhancing the
experience) is hosted in acidanthera/audk.

The only officially supported toolchain is XCODE5. Other toolchains might work, but are neither supported, nor
recommended. Contribution of clean patches is welcome. Please do follow [EDK II C Codestylel

Required external package dependencies include EfiPkg, MacInfoPkg, and |OcSupportPkgl

To compile with XCODE5, besides Xcode, one should also install NASM and MTOC. The latest Xcode version is
recommended for use despite the toolchain name. Example command sequence may look as follows:

git clone https://github.com/acidanthera/audk UDK

cd UDK

git clone https://github.com/acidanthera/EfiPkg

git clone https://github.com/acidanthera/MacInfoPkg

git clone https://github.com/acidanthera/0OcSupportPkg

git clone https://github.com/acidanthera/OpenCorePkg

source edksetup.sh

make -C BaseTools

build -a X64 -b RELEASE -t XCODE5 -p OpenCorePkg/OpenCorePkg.dsc

Listing 1: Compilation Commands

https://github.com/acidanthera/OpenCorePkg/blob/master/Docs/Kexts.md
https://developer.apple.com/xcode
https://github.com/corpnewt/ProperTree
https://github.com/acidanthera/OcSupportPkg/tree/master/Utilities/BootInstall
https://github.com/tianocore/tianocore.github.io/wiki/EDK-II
https://github.com/tianocore/tianocore.github.io/wiki/UDK
https://github.com/tianocore/tianocore.github.io/wiki/EDK-II#stable-tags
https://github.com/acidanthera/audk
https://github.com/tianocore/tianocore.github.io/wiki/Code-Style-C
https://github.com/acidanthera/OcSupportPkg
https://github.com/acidanthera/OcSupportPkg
https://github.com/acidanthera/OcSupportPkg
https://developer.apple.com/xcode
https://www.nasm.us
https://github.com/acidanthera/ocbuild/raw/master/external/mtoc-mac64.zip

For IDE usage Xcode projects are available in the root of the repositories. Another approach could be [Sublime Text
with [EasyClangComplete plugin. Add .clang_complete file with similar content to your UDK root:

-I/UefiPackages/MdePkg
-I/UefiPackages/MdePkg/Include
-I/UefiPackages/MdePkg/Include/X64
-I/UefiPackages/EfiPkg
-I/UefiPackages/EfiPkg/Include
-I/UefiPackages/EfiPkg/Include/X64
I/UefiPacl /Aot ioFixPke/Includ
-I/UefiPackages/AppleSupportPkg/Include
-I/UefiPackages/0OpenCorePkg/Include
-I/UefiPackages/0cSupportPkg/Include
-I/UefiPackages/MacInfoPkg/Include
-I/UefiPackages/UefiCpuPkg/Include
-IInclude
—include
/Uef iPackages/MdePkg/Include/Uefi.h
-fshort-wchar
-Wall
-Wextra
-Wno-unused-parameter
-Wno-missing-braces
-Wno-missing-field-initializers
-Wno-tautological-compare
-Wno-sign-compare
-Wno-varargs
-Wno-unused-const-variable

Listing 2: ECC Configuration

Warning: Tool developers modifying config.plist or any other OpenCore files must ensure that their tool checks
for opencore-version NVRAM variable (see Debug Properties section below) and warn the user if the version listed
is unsupported or prerelease. OpenCore configuration may change across the releases and the tool shall ensure that it
carefully follows this document. Failure to do so may result in this tool to be considered as malware and blocked with
all possible means.

https://www.sublimetext.com
https://niosus.github.io/EasyClangComplete

4

4.1

ACPI

Introduction

ACPT (Advanced Configuration and Power Interface) is an open standard to discover and configure computer hardware.
ACPI specification| defines the standard tables (e.g. DSDT, SSDT, FACS, DMAR) and various methods (e.g. _DSM, _PWRPRW)
for implementation. Modern hardware needs little changes to maintain ACPI compatibility, yet some of those are
provided as a part of OpenCore.

To compile and disassemble ACPI tables iASL compiler can be used developed by ACPICA.L GUI front-end to iASL
compiler can be downloaded from |Acidanthera/MaciASL.

4.2

1.

Properties

Add

Type: plist array

Failsafe: Empty

Description: Load selected tables from 0C/ACPI directory.

Designed to be filled with plist dict values, describing each block entry. See section below.

Block

Type: plist array

Failsafe: Empty

Description: Remove selected tables from ACPI stack.

Designed to be filled with plist dict values, describing each block entry. See Block Properties section below.

Patch

Type: plist array

Failsafe: Empty

Description: Perform binary patches in ACPI tables before table addition or removal.

Designed to be filled with plist dictionary values describing each patch entry. See Patch Properties section
below.

Quirks
Type: plist dict
Description: Apply individual ACPI quirks described in [Quirks Properties| section below.

Add Properties

. Comment

Type: plist string

Failsafe: Empty string

Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

Enabled

Type: plist boolean

Failsafe: false

Description: This ACPI table will not be added unless set to true.

Path

Type: plist string

Failsafe: Empty string

Description: File paths meant to be loaded as ACPI tables. Example values include DSDT . aml, SubDir/SSDT-8.aml,
SSDT-USBX.aml, etc.

ACPI table load order follows the item order in the array. All ACPI tables load from 0C/ACPI directory.

Note: All tables but tables with DSDT table identifier (determined by parsing data not by filename) insert new
tables into ACPI stack. DSDT, unlike the rest, performs replacement of DSDT table.

https://uefi.org/specifications
https://github.com/acpica/acpica
https://www.acpica.org
https://github.com/acidanthera/MaciASL/releases

6. Mask
Type: plist data
Failsafe: Empty data
Description: Data bitwise mask used during find comparison. Allows fuzzy search by ignoring not masked (set
to zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

7. OemTableId
Type: plist data, 8 bytes
Failsafe: All zero
Description: Match table OEM ID to be equal to this value unless all zero.

8. Replace
Type: plist data
Failsafe: Empty data
Description: Replacement data of one or more bytes.

9. ReplaceMask
Type: plist data
Failsafe: Empty data
Description: Data bitwise mask used during replacement. Allows fuzzy replacement by updating masked (set
to non-zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

10. Skip
Type: plist integer
Failsafe: 0
Description: Number of found occurrences to be skipped before replacement is done.

11. TableLength
Type: plist integer
Failsafe: 0
Description: Match table size to be equal to this value unless 0.

12. TableSignature
Type:
textttplist data, 4 bytes
Failsafe: All zero
Description: Match table signature to be equal to this value unless all zero.

In the majority of the cases ACPI patches are not useful and harmful:

e Avoid renaming devices with ACPI patches. This may fail or perform improper renaming of unrelated devices
(e.g. EC and ECO), be unnecessary, or even fail to rename devices in select tables. For ACPI consistency it is much
safer to rename devices at I/O Registry level, as done by WhateverGreen.

¢ Avoid patching _0SI to support a higher level of feature sets unless absolutely required. Commonly this enables a
number of hacks on APTIO firmwares, which result in the need to add more patches. Modern firmwares generally
do not need it at all, and those that do are fine with much smaller patches.

o Try to avoid hacky changes like renaming _PWRPRW or _DSM whenever possible.
Several cases, where patching actually does make sense, include:

o Refreshing HPET (or another device) method header to avoid compatibility checks by _0SI on legacy hardware.
_STA method with if ((0SFL () == Zero)) { If (HPTE) ... Return (Zero) content may be forced to
always return OxF by replacing AO 10 93 4F 53 46 4C 00 with A4 OA OF A3 A3 A3 A3 A3.

e To provide custom method implementation with in an SSDT, for instance, to report functional key presses on a
laptop, the original method can be replaced with a dummy name by patching _Q11 with XQ11.

Tianocore AcpiAml.h/ source file may help understanding ACPI opcodes.

4.6 Quirks Properties

1. FadtEnableReset
Type: plist boolean

11

https://github.com/acidanthera/WhateverGreen
https://github.com/tianocore/edk2/blob/UDK2018/MdePkg/Include/IndustryStandard/AcpiAml.h

Failsafe: false
Description: Provide reset register and flag in FADT table to enable reboot and shutdown on legacy hardware.
Not recommended unless required.

. NormalizeHeaders

Type: plist boolean

Failsafe: false

Description: Cleanup ACPI header fields to workaround macOS ACPI implementation bug causing boot crashes.
Reference: Debugging Apple ACPIPlatform on 10.13| by Alex James aka theracermaster. The issue is fixed in
macOS Mojave (10.14).

. RebaseRegions

Type: plist boolean

Failsafe: false

Description: Attempt to heuristically relocate ACPI memory regions. Not recommended.

ACPI tables are often generated dynamically by underlying firmware implementation. Among the position-
independent code, ACPI tables may contain physical addresses of MMIO areas used for device configuration,
usually grouped in regions (e.g. OperationRegion). Changing firmware settings or hardware configuration,
upgrading or patching the firmware inevitably leads to changes in dynamically generated ACPI code, which
sometimes lead to the shift of the addresses in aforementioned OperationRegion constructions.

For this reason it is very dangerous to apply any kind of modifications to ACPI tables. The most reasonable
approach is to make as few as possible changes to ACPI and try to not replace any tables, especially DSDT.
When this is not possible, then at least attempt to ensure that custom DSDT is based on the most recent DSDT
or remove writes and reads for the affected areas.

When nothing else helps this option could be tried to avoid stalls at PCI Configuration Begin phase of macOS
booting by attempting to fix the ACPI addresses. It does not do magic, and only works with most common cases.
Do not use unless absolutely required.

. ResetHwSig

Type: plist boolean

Failsafe: false

Description: Reset FACS table HardwareSignature value to 0.

This works around firmwares that fail to maintain hardware signature across the reboots and cause issues with
waking from hibernation.

. ResetLogoStatus

Type: plist boolean

Failsafe: false

Description: Reset BGRT table Displayed status field to false.

This works around firmwares that provide BGRT table but fail to handle screen updates afterwards.

12

https://alextjam.es/debugging-appleacpiplatform/

5 DBooter

5.1 Introduction

This section allows to apply different kinds of UEFI modifications on Apple bootloader (boot.efi). The modifications

currently provide various patches and environment alterations for different firmwares. Some of these features were
originally implemented as a part of AptioMemoryFix.efi, which is no longer maintained. See [Tips and Tricks|section

If you are using this for the first time on a customised firmware, there is a list of checks to do first. Prior to startin
lease ensure that you have:

* Most up-to-date UEFT firmware (check your motherboard vendor website).

» Fast Boot and Hardware Fast Boot disabled in firmware settings if present.

* Above 4G Decoding or similar enabled in firmware settings if present. Note, that on some motherboards (notably.
ASUS WS-X299-PRO) this option causes adverse effects, and must be disabled. While no other motherboards
with the same issue are known, consider this option to be first to check if you have erratic hoot failures.

» DisableloMapper quirk enabled, or VI-d disabled in firmware settings if present, or ACPT DMAR table dropped.

» No ‘slide’ boot argument present in NVRAM or anywhere else. It is not necessary unless you cannot boot at all
or see No_slide values are usable! Use custom slide! message in the log.

« CFG Lock (MSR OxE2 write protection) disabled in firmware settings if present. Cconsider patching it if you
@WMMWMWMVeryMerQ nots for more details.

- CsM (Compatibility Support Module) disabled in firmware settings if present. You may need to flash GOP ROM
on NVIDIA 63/ AMD 2xx or older. Use GopUpdate| or AMD UEFI GOP MAKER|in case you are not sure how.

+ EHCI/XHCI Hand-off cnabled in firmware settings only if boot stalls unless USB devices are disconnected.

e VT-x, Hyper Threading, Execute Disable Bit enabled in firmware settings if present.
e While it may not be required, sometimes you have to disable Thunderbolt support., Intel SGX, and Intel
Platform Trust in firmware settings present.

When debugging sleep issues you may want to (temporarily) disable Power Nap and automatic power off, which appear

to sometimes cause wake to black screen or boot loop issues on older platforms. The particular issues may vary, but
in general you should check ACPI tables first. Here is an example of a bug found in some Z68 motherboards, To turn
Power Nap and the others off run the following commands in Terminal:

sudo pmset autopoweroff O
sudo_pmset powernap 0
sudo pmset standby O

Note: these settings may reset at hardware change and in certain other circumstances. To view their current state use
puset -g command in Terminal.

5.2 Properties
1. Quirks
Type: plist dict

Description: Appl

individual booter quirks described in [Quirks Properties| section below.

5.3 Quirks Properties

1. AvoidRuntimeDefra
Type: plist boolean

Description: Protect from boot.efi runtime memory defragmentation.
This option fixes UEFI runtime services (date, time, NVRAM, power control, etc.) support on many firmwares

using SMM backing for select services like variable storage. SMM may try to access physical addresses, but the
et moved by boot.efi.

Note: Most but Apple and VMware firmwares need this quirk.

13

https://github.com/acidanthera/AptioFixPkg
https://github.com/LongSoft/UEFITool/blob/master/UEFIPatch/patches.txt
https://github.com/acidanthera/AppleSupportPkg#verifymsre2
https://www.win-raid.com/t892f16-AMD-and-Nvidia-GOP-update-No-requests-DIY.html#msg15730
http://www.insanelymac.com/forum/topic/299614-asus-eah6450-video-bios-uefi-gop-upgrade-and-gop-uefi-binary-in-efi-for-many-ati-cards/page-1#entry2042163
http://www.insanelymac.com/forum/topic/329624-need-cmos-reset-after-sleep-only-after-login/#entry2534645

Note: The necessity of this quirk is determined by artifacts and sleep wake issues. As AvoidRuntimeDefra
resolves a similar problem, no known firmwares should need this quirk. Do not use this unless you fully understand

8. ProvideCustomSlide

Type: plist boolean

Description: Provide custom KASLR slide on low memory.

This option performs memory map analysis of your firmware and checks whether all slides (from 1 to 265) can
be used. As boot.efi generates this value randomly with rdrand or pseudo randomly rdtsc, there is a chance
of boot failure when it chooses a conflicting slide. In case potential conflicts exist, this option forces macOS to
use a_pseudo random value among the available ones. This also ensures that slide= argument is never passed

Note: The necessity of this quirk is determined by OCABC: Only N/256 slide values are usable! message
in the debug log. If the message is present, this option is to be enabled.

9. SetupVirtualMa
Type: plist boolean

Description: Setup virtual memory at SetVirtualAddresses.

Select firmwares access memory by virtual addresses after SetVirtualAddresses call, which results in earl
boot crashes. This quirk workarounds the problem by performing early boot identity mapping of assigned
virtual addresses to physical memory.

Note: The necessity of this quirk is determined by early boot failures.

10. ShrinkMemoryMa

Type: plist boolean

Description: Attempt to join similar memory map entries.

Select firmwares have very large memory maps, which do not fit Apple kernel, permitting up to 64 slots for
runtime memory. This quirk attempts to unify contiguous slots of similar types to prevent boot failures.

Note: The necessity of this quirk is determined by early boot failures. It is rare to need this quirk on Haswell or
newer. Do not use unless you fully understand the consequences.

15

Failsafe: Empty string
Description: Kext executable path relative to bundle (e.g. Contents/Mac0S/Lilu).

MatchKernel

Type: plist string

Failsafe: Empty string

Description: Bleeks-Adds kernel driver on selected macOS version only. The selection happens based on prefix
match with the kernel version, i.e. 16.7.0 will match macOS 10.12.6 and 16. will match any macOS 10.12.x
version.

PlistPath

Type: plist string

Failsafe: Empty string

Description: Kext Info.plist path relative to bundle (e.g. Contents/Info.plist).

Block Properties

1. Comment

7.5

7.6

Type: plist string

Failsafe: Empty string

Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

. Enabled

Type: plist boolean
Failsafe: false
Description: This kernel driver will not be blocked unless set to true.

Identifier

Type: plist string

Failsafe: Empty string

Description: Kext bundle identifier (e.g. com.apple.driver.AppleTyMCEDriver).

MatchKernel

Type: plist string

Failsafe: Empty string

Description: Blocks kernel driver on selected macOS version only. The selection happens based on prefix match
with the kernel version, i.e. 16.7.0 will match macOS 10.12.6 and 16. will match any macOS 10.12.x version.

Emulate Properties

. CpuidiData

Type: plist data, 16 bytes

Failsafe: All zero

Description: Sequence of EAX, EBX, ECX, EDX values in Little Endian order to replace CPUID (1) call in XNU
kernel.

CpuidiMask

Type: plist data, 16 bytes

Failsafe: All zero

Description: Bit mask of active bits in CpuidiData. When each CpuidiMask bit is set to 0, the original CPU

bit is used, otherwise set bits take the value of CpuidiData.

Patch Properties

. Base

Type: plist string

Failsafe: Empty string

Description: Selects symbol-matched base for patch lookup (or immediate replacement) by obtaining the address
of provided symbol name. Can be set to empty string to be ignored.

18

7.7

Quirks Properties

. AppleCpuPmCfgLock

Type: plist boolean

Failsafe: false

Description: Disables PKG_CST_CONFIG_CONTROL (0xE2) MSR modification in AppleIntelCPUPowerManage-
ment.kext, commonly causing early kernel panic, when it is locked from writing.

Note: This option should avoided whenever possible. Modern firmwares provide CFG Lock setting, disabling
which is much cleaner. More details about the issue can be found in [VerifyMsrE2| notes.

AppleXcpmCfglLock

Type: plist boolean

Failsafe: false

Description: Disables PKG_CST_CONFIG_CONTROL (0xE2) MSR modification in XNU kernel, commonly causing
early kernel panic, when it is locked from writing (XCPM power management).

Note: This option should avoided whenever possible. Modern firmwares provide CFG Lock setting, disabling
which is much cleaner. More details about the issue can be found in |[VerifyMsrE2 notes.

AppleXcpmExtraMsrs

Type: plist boolean

Failsafe: false

Description: Disables multiple MSR. access critical for select CPUs, which have no native XCPM support.

This is normally used in conjunction with Emulate section on Haswell-E, Broadwell-E, Skylake-X, and similar
CPUs. More details on the XCPM patches are outlined in [acidanthera/bugtracker#365.

Note: Additional not provided patches will be required for Ivy Bridge or Pentium CPUs. It is recommended to
use AppleIntelCpuPowerManagement.kext for the former.

. CustomSMBIOSGuid

Type: plist boolean
Failsafe: false
Description: Performs GUID patching for UpdateSMBIOSMode Custom mode. Usually relevant for Dell laptops.

. DisableIoMapper

Type: plist boolean
Failsafe: false
Description: Disables I0Mapper support in XNU (VT-d), which may conflict with the firmware implementation.

Note: This option is a preferred alternative to dropping DMAR ACPI table and disabling VT-d in firmware
preferences, which does not break VT-d support in other systems in case they need it.

ExternalDiskIcons

Type: plist boolean

Failsafe: false

Description: Apply icon type patches to AppleAHCIPort.kext to force internal disk icons for all AHCI disks.

Note: This option should avoided whenever possible. Modern firmwares usually have compatible AHCI controllers.

LapicKernelPanic

Type: plist boolean

Failsafe: false

Description: Disables kernel panic on LAPIC interrupts.

PanicNoKextDump

Type: plist boolean

Failsafe: false

Description: Prevent kernel from printing kext dump in the panic log preventing from observing panic details.
Affects 10.13 and above.

ThirdPartyTrim
Type: plist boolean

20

https://github.com/acidanthera/AppleSupportPkg#verifymsre2
https://github.com/acidanthera/AppleSupportPkg#verifymsre2
https://github.com/acidanthera/bugtracker/issues/365

8

8.1

Misc

Introduction

This section contains miscellaneous configuration entries for OpenCore behaviour that does not go to any other sections

8.2

1.

Properties

Boot
Type: plist dict
Description: Apply boot configuration described in section below.

BlessOverride

Description: Add custom scanning paths through bless model.

Designed to be filled with plist string entries containing absolute UEFI paths to customised bootloaders,
for example, \EFT\Microsoft\bootmgfw.efi for Microsoft bootloader. This allows unusual boot paths to be
automaticlly discovered by the boot picker, Designwise they are equivalent to predefined blessed path, such as
\System\Library\CoreServices\boot.efi, but unlike predefined bless paths they have highest priority.

Debug
Type: plist dict
Description: Apply debug configuration described in Debug Properties section below.

Entries

Description: Add boot entries to boot picker.

Designed to be filled with plist _dict values, describing each load entry. See[Entry Properties|section below.

Security
Type: plist dict
Description: Apply security configuration described in [Security Properties| section below.

Tools
Type: plist array
Description: Add new-tool entries to boot picker.

Designed to be filled with plist dict values, describing each bleek-load entry. See [Entry Properties| section
below.

Note: Select tools, for example, UEFI-Shell-or NVRAM-eleaning UEFI Shell or CleanNvram|are very dangerous

and MUST NOT appear in production configurations, especially in vaulted ones and protected with secure
boot, as they may be used to easily bypass secure boot chain.

Boot Properties

. ConsoleMode

Type: plist string

Failsafe: Empty string

Description: Sets console output mode as specified with the WxH (e.g. 80x24) formatted string. Set to empty
string not to change console mode. Set to Max to try to use largest available console mode.

ConsoleBehaviourOs

Type: plist string

Failsafe: Empty string

Description: Set console control behaviour upon operating system load.

Console control is a legacy protocol used for switching between text and graphics screen output. Some firmwares
do not provide it, yet select operating systems require its presence, which is what ConsoleControl UEFI protocol
is for.

22

https://github.com/acidanthera/OpenCoreShell
https://github.com/acidanthera/AppleSupportPkg#cleannvram

When console control is available, OpenCore can be made console control aware, and and set different modes for
the operating system booter (ConsoleBehaviour0Os), which normally runs in graphics mode, and its own user
interface (ConsoleBehaviourUi), which normally runs in text mode. Possible behaviours, set as values of these
options, include:

e Empty string — Do not modify console control mode.

e Text — Switch to text mode.

e Graphics — Switch to graphics mode.

o ForceText — Switch to text mode and preserve it (requires ConsoleControl).

e ForceGraphics — Switch to graphics mode and preserve it (require ConsoleControl).

Hints:

o Unless empty works, firstly try to set ConsoleBehaviourOs to Graphics and ConsoleBehaviourUi to Text.

e On APTIO IV (Haswell and earlier) it is usually enough to have ConsoleBehaviourOs set to Graphics and
ConsoleBehaviourUi set to ForceText to avoid visual glitches.

e On APTIO V (Broadwell and newer) ConsoleBehaviour0s set to ForceGraphics and ConsoleBehaviourUi
set to ForceText usually works best.

e On Apple firmwares ConsoleBehaviourOs set to Graphics and ConsoleBehaviourUi set to Text is supposed
to work best.

Note: IgnoreTextInGraphics and SanitiseClearScreen may need to be enabled for select firmware implemen-
tations. Particularly APTIO firmwares.

. ConsoleBehaviourUi

Type: plist string

Failsafe: Empty string

Description: Set console control behaviour upon OpenCore user interface load. Refer to ConsoleBehaviourQOs
description for details.

. HibernateMode

Type: plist string

Failsafe: None

Description: Hibernation detection mode. The following modes are supported:

e None — Avoid hibernation for your own good.
e Auto — Use RTC and NVRAM detection.

e RTC — Use RTC detection.

e NVRAM — Use NVRAM detection.

. HideSelf

Type: plist boolean

Failsafe: false

Description: Hides own boot entry from boot picker. This may potentially hide other entries, for instance, when
another UEFI OS is installed on the same volume and driver boot is used.

. Resolution

Type: plist string

Failsafe: Empty string

Description: Sets console output screen resolution.

o Set to WxHOBpp (e.g. 1920x1080@32) or WxH (e.g. 1920x1080) formatted string to request custom resolution
from GOP if available.

e Set to empty string not to change screen resolution.

e Set to Max to try to use largest available screen resolution.

On HiDPI screens APPLE_VENDOR_VARIABLE_GUID UIScale NVRAM variable may need to be set to 02 to enable
HiDPI scaling in FileVault 2 UEFI password interface and boot screen logo. Refer to Recommended Variables
section for more details.

Note: This will fail when console handle has no GOP protocol. When the firmware does not provide it, it can be
added with ProvideConsoleGop UEFI quirk set to true.

23

Console logging prints less than all the other variants. Depending on the build type (RELEASE, DEBUG, or NOOPT)
different amount of logging may be read (from least to most).

Data Hub log will not log kernel and kext patches. To obtain Data Hub log use the following command in macOS:

ioreg -1w0 -p IODeviceTree | grep boot-log | sort | sed 's/.*<\(.*\)>.*/\1/' | xxd -r -p

UEFT variable log does not include some messages and has no performance data. For safety reasons log size is
limited to 32 kilobytes. Some firmwares may truncate it much earlier or drop completely if they have no memory.
Using non-volatile flag will write the log to NVRAM flash after every printed line. To obtain UEFT variable log
use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-1log |
awk '{gsub(/%0d4%0a%00/,"") ;gsub(/%0d%0a/,"\n")}1"'

Warning: Some firmwares are reported to have broken NVRAM garbage collection. This means that they may
not be able to always free space after variable deletion. Do not use non-volatile NVRAM logging without extra
need on such devices.

While OpenCore boot log already contains basic version information with build type and date, this data may also
be found in NVRAM in opencore-version variable even with boot log disabled.

File logging will create a file named epencoreopencore-YYYY-MM-DD-HHMMSS .Tegtxt at EFI volume root with

log contents (the upper case letter sequence is replaced with date and time from the firmware). Please be warned

that some file system drivers present in firmwares are not reliable, and may corrupt data when writing files through
UEFTI. Log is attempted to be written in the safest manner, and thus is very slow. Ensure that DisableWatchDog
is set to true when you use a slow drive.

Security Properties

1. ExposeSensitiveData

Type: plist integer
Failsafe: 2
Description: Sensitive data exposure bitmask (sum) to operating system.

e 0x01 — Expose printable booter path as an UEFI variable.
e 0x02 — Expose OpenCore version as an UEFI variable.

Exposed booter path points to OpenCore.efi or its booter depending on the load order. To obtain booter path
use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-path

To use booter path for mounting booter volume use the following command in macOS:

u=$(nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-path | sed 's/.*GPT,\([7,I1*\),.*/\1/'); \
if ["$u" !'= ""]; then sudo diskutil mount $u ; fi

To obtain OpenCore version use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:0opencore-version

. HaltLevel

Type: plist integer, 64 bit

Failsafe: 0x80000000 (DEBUG_ERROR)

Description: EDK IT debug level bitmask (sum) causing CPU to halt (stop execution) after obtaining a message
of HaltLevel. Possible values match DisplayLevel values.

. RequireSignature

Type: plist boolean
Failsafe: true
Description: Require vault.sig signature file for vault.plist in 0C directory.

25

8.6

e 0x00000001 (bit 0) — OC_SCAN_FILE_SYSTEM_LOCK, restricts scanning to only known file systems defined as
a part of this policy. File system drivers may not be aware of this policy, and to avoid mounting of undesired
file systems it is best not to load its driver. This bit does not affect dmg mounting, which may have any file
system. Known file systems are prefixed with 0C_SCAN_ALLOW_FS_.

e 0x00000002 (bit 1) — OC_SCAN_DEVICE_LOCK, restricts scanning to only known device types defined as a
part of this policy. This is not always possible to detect protocol tunneling, so be aware that on some
systems it may be possible for e.g. USB HDDs to be recognised as SATA. Cases like this must be reported.
Known device types are prefixed with 0C_SCAN_ALLOW_DEVICE_.

e 0x00000100 (bit 8) — OC_SCAN_ALLOW_FS_APFS, allows scanning of APFS file system.

e 0x00000200 (bit 9) — OC_SCAN_ALLOW_FS_HFS, allows scanning of HFS file system.

¢ 0x00000400 (bit 10) — O0C_SCAN_ALLOW_FS_ESP, allows scanning of EFI System Partition file system.

¢ 0x00010000 (bit 16) — OC_SCAN_ALLOW_DEVICE_SATA, allow scanning SATA devices

e 0x00020000 (bit 17) — 0C_SCAN_ALLOW_DEVICE_SASEX, allow scanning SAS and Mac NVMe devices.

e 0x00040000 (bit 18) — 0C_SCAN_ALLOW_DEVICE_SCSI, allow scanning SCSI devices.

e 0x00080000 (bit 19) — 0C_SCAN_ALLOW_DEVICE_NVME, allow scanning NVMe devices.

e 0x00100000 (bit 20) — 0C_SCAN_ALLOW_DEVICE_ATAPI, allow scanning CD/DVD devices.

e 0x00200000 (bit 21) — 0C_SCAN_ALLOW_DEVICE_USB, allow scanning USB devices.

e 0x00400000 (bit 22) — 0C_SCAN_ALLOW_DEVICE_FIREWIRE, allow scanning FireWire devices.

e 0x00800000 (bit 23) — 0C_SCAN_ALLOW_DEVICE_SDCARD, allow scanning card reader devices.

Note: Given the above description, 0xF0103 value is expected to allow scanning of SATA, SAS, SCSI, and NVMe
devices with APFS file system, and prevent scanning of any devices with HF'S or FAT32 file systems in addition
to not scanning APFS file systems on USB, CD, USB, and FireWire drives. The combination reads as:

o 0C_SCAN_FILE_SYSTEM_LOCK

« 0C_SCAN_DEVICE_LOCK

o OC_SCAN_ALLOW_FS_APFS

e OC_SCAN_ALLOW_DEVICE_SATA
o OC_SCAN_ALLOW_DEVICE_SASEX
o 0C_SCAN_ALLOW_DEVICE_SCSI
o 0C_SCAN_ALLOW_DEVICE_NVME

Teols-Entry Properties

. Comment

Type: plist string

Failsafe: Empty string

Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

Enabled

Type: plist boolean

Failsafe: false

Description: This teel-entry will not be listed unless set to true.

Name

Type: plist string

Failsafe: Empty string

Description: Human readable teol-entry name displayed in boot picker.

Path
Type: plist string
Failsafe: Empty string
Description: File-path-to-seleet-UlFItool-Entry location depending on entry type.
+ Entries specify external boot options, and therefore take device paths in Path key. These values are not
checked, thus be extremely careful. Example: PciRoot (0x0) /Pci(0x1,0x1) /. . . /\EFI\COQL . EFT

» Tools specify internal boot options, which are part of bootloader vault, and therefore take file paths relative
to 0C/Tools directory. Example: CleanNvram.efi.

27

9 NVRAM

9.1 Introduction

Has plist dict type and allows to set volatile UEFI variables commonly referred as NVRAM variables. Refer
to man nvram for more details. macOS extensively uses NVRAM variables for OS — Bootloader — Firmware
intercommunication, and thus supplying several NVRAM is required for proper macOS functioning.

Each NVRAM variable consists of its name, value, attributes (refer to UEFI specification), and its GUID) representing
which ‘section’ NVRAM variable belongs to. macOS uses several GUIDs, including but not limited to:

 4D1EDE05-38C7-4A6A-9CC6-4BCCAS8B38C14 (APPLE_VENDOR_VARIABLE_GUID)
« 7C436110-AB2A-4BBB-A880-FE41995C9F82 (APPLE_BOOT_VARIABLE_GUID)
« 8BE4DF61-93CA-11D2-AAOD-00E098032B8C (EFI_GLOBAL_VARIABLE_GUID)
+ 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102 (OC_VENDOR_VARIABLE_GUID)

Note: Some of the variables may be added by PlatformNVRAM or Generic subsections of PlatformInfo section. Please
ensure that variables of this section never collide with them, as behaviour is undefined otherwise.

9.2 Properties

1. Add
Type: plist dict
Description: Sets NVRAM variables from a map (plist dict) of GUIDs to a map (plist dict) of variable
names and their values in plist metadata format. GUIDs must be provided in canonic string format in upper
or lower case (e.g. 8BE4DF61-93CA-11D2-AA0D-00E098032B8C).

Created variables get EFI_VARIABLE_BOOTSERVICE_ACCESS and EFI_VARIABLE_RUNTIME_ACCESS attributes set.
Variables will only be set if not present and not blocked. To overwrite a variable add it to Block section. This
approach enables to provide default values till the operating system takes the lead.

Note: If plist key does not conform to GUID format, behaviour is undefined.

2. Block
Type: plist dict
Description: Removes NVRAM variables from a map (plist dict) of GUIDs to an array (plist array) of
variable names in plist string format.

3. LegacyEnable
Type: plist boolean
Failsafe: false
Description: Enables loading of NVRAM variable file named nvram.plist from EFI volume root.

This file must have root plist dictionary type and contain two fields:

e Version — plist integer, file version, must be set to 1.
e Add — plist dictionary, equivalent to Add from config.plist.

Variable loading happens prior to Block (and Add) phases, and will not overwrite any existing variable. Variables
allowed to be set must be specified in LegacySchema. Third-party scripts may be used to create nvram.plist
file. Example-An example of such script can be found in FeetsUtilities. The use of third-party scripts may
require ExposeSensitiveData set to 0x3 to provide boot-path variable with OpenCore EFT partition UUID.

WARNING: This feature is very dangerous as it passes unprotected data to your firmware variable services.
Use it only when no hardware NVRAM implementation is provided by the firmware or it is incompatible.

4. LegacySchema
Type: plist dict
Description: Allows setting select NVRAM variables from a map (plist dict) of GUIDs to an array (plist
array) of variable names in plist string format.
You can use * value to accept all variables for select GUID.

WARNING: Choose variables very carefully, as nvram.plist is not vaulted. For instance, do not put boot-args
or csr-active-config, as this can bypass SIP.

28

https://en.wikipedia.org/wiki/Universally_unique_identifier

may be found by looking for the use of PE_parse_boot_argn function in the kernel or driver code. Some of the
known boot arguments include:

— acpi_layer=0xFFFFFFFF

— acpi_level=0xFFFF5F (implies ACPI_ALL_COMPONENTS)

— batman=VALUE (AppleSmartBatteryManager debug mask)

— batman-nosmc=1 (disable AppleSmartBatteryManager SMC interface)

— cpus=VALUE (maximum number of CPUs used)

— debug=VALUE (debug mask)

— 10=VALUE (I0Kit debug mask)

— keepsyms=1 (show panic log debug symbols)

— kextlog=VALUE (kernel extension loading debug mask)

— nv_disable=1 (disables NVIDIA GPU acceleration)

— nvda_drv=1 (legacy way to enable NVIDIA web driver, removed in 10.12)
— npci=0x2000 (legacy, disables kIQPCIConfiguratorPFM64)

— lapic_dont_panic=1

— s1ide=VALUE (manually set KASLR slide)

— smcdebug=VALUE (AppleSMC debug mask)

— zamd_no_dgpu_accel (alternative to WhateverGreen's ~radvesa for new GPUs)
— -nehalem_error_disable

— ~no_compat_check (disable model checking)

— -s (single mode)

— -v (verbose mode)

— ~x (safe mode)

There are multiple external places summarising macOS argument lists: lexample 1, lexample 2.
7C436110-AB2A-4BBB-A880-FE41995COF82:bootercfg

Booter arguments, similar to boot-args but for boot.efi. Accepts a set of arguments, which are hexadeci-
mal 64-bit values with or without Ox prefix primarily for logging control:

— log=VALUE

* 1 — AppleLoggingConOutOrErrSet/AppleLoggingConOutOrErrPrint (classical ConOut/StdErr)

*x 2 — AppleLoggingStdErrSet/AppleLoggingStdErrPrint (StdErr or serial?)

* 4 — AppleLoggingFileSet / AppleLoggingFilePrint (BOOTER.LOG/BOOTER.OLD file on EFT partition)
debug=VALUE

* 1 — enables print something to BOOTER.LOG (stripped code implies there may be a crash)

* 2 — enables perf logging to /efi/debug-log in the device three

* 4 — enables timestamp printing for styled printf calls

— level=VALUE — Verbosity level of DEBUG output. Everything but 0x80000000 is stripped from the binary,

and this is the default value.
— kc-read-size=VALUE — Chunk size used for buffered I/O from network or disk for prelinkedkernel reading
and related. Set to 1IMB (0x100000) by default, can be tuned for faster booting,.

7C436110-AB2A-4BBB-A880-FE41995C9F82:bootercfg-once
Booter arguments override removed after first launch. Otherwise equivalent to bootercfg.
7C436110-AB2A-4BBB-A880-FE41995C9F82 : fmm—computer-name
Current saved host name. ASCII string.
7C436110-AB2A-4BBB-A880-FE41995C9F82:nvda_drv
NVIDIA Web Driver control variable. Takes ASCII digit 1 or 0 to enable or disable installed driver.

30

https://github.com/acpica/acpica/blob/master/source/include/acoutput.h
https://www.insanelymac.com/forum/topic/260539-1068-officially-released/?do=findComment&comment=1707972
https://github.com/acidanthera/WhateverGreen
https://osxeon.wordpress.com/2015/08/10/boot-argument-options-in-os-x
https://superuser.com/questions/255176/is-there-a-list-of-available-boot-args-for-darwin-os-x

11 UEFI

11.1 Introduction

UEFT (Unified Extensible Firmware Interface) is a specification that defines a software interface between an operating
system and platform firmware. This section allows to load additional UEFI modules and/or apply tweaks for the onboard
firmware. To inspect firmware contents, apply modifications and perform upgrades UEFITooll and supplementary
utilities can be used.

11.2 Properties

1. ConnectDrivers
Type: plist boolean
Failsafe: false
Description: Perform UEFT controller connection after driver loading. This option is useful for loading filesystem
drivers, which usually follow UEFT driver model, and may not start by themselves. While effective, this option is
not necessary with e.g. APFS loader driver, and may slightly slowdown the boot.

2. Drivers
Type: plist array
Failsafe: None
Description: Load selected drivers from 0C/Drivers directory.

Designed to be filled with string filenames meant to be loaded as UEFI drivers. Depending on the firmware a
different set of drivers may be required. Loading an incompatible driver may lead your system to unbootable
state or even cause permanent firmware damage. Some of the known drivers include:

e |ApfsDriverLoader|— APFS file system bootstrap driver adding the support of embedded APFS drivers in
bootable APFS containers in UEFI firmwares.

e |AppleUiSupport|— Apple-specific user interface support driver. This driver brings the support for FileVault
2 GUI, hotkey parsing (shift, cmd+v, etc.), language collation support, and certain other features important
for normal macOS functioning. For hotkey support AppleKeyMapAggregator-compatible driver is required.

e AppleGenericInput|— user input driver adding the support of AppleKeyMapAggregator protocols on top
of different UEFI input protocols. Additionally resolves mouse input issues on select firmwares. This is an
alternative to UsbKbDxe, which Inay work better or worse dependlng on the ﬁrmware

o FwRuntimeServices — —or ‘ F 3

+—0C_FIRMWARE_RUNTINE

rotocol implementation that increases the security of OpenCore and Lilu by supporting read-only and
write-only NVRAM variables. Some quirks, like RequestBootVarRouting, require this driver for proper
function. Due to the nature of being a runtime driver, i.e. functioning in parallel with the target operatin

system, it cannot be im lemented Wlthln OpenCore itself.
o Engllsthe— NV : ; o NV

e —Unicode collation driver from MdeModulePkg. This driver is a lightweight alternative to AppleUiSupport,
which contains no Apple-specific code, and only provides unicode collation support. The driver is not
recommended for use on any hardware but few original Macs.

¢ [EnhancedFatDxe| — FAT filesystem driver from FatPkg. This driver is embedded in all UEFI firmwares,
and cannot be used from OpenCore. It is known that multiple firmwares have a bug in their FAT support
implementation, which leads to corrupted filesystems on write attempt. Embedding this driver within the
firmware may be required in case writing to EFI partition is needed during the boot process.

e NvmExpressDxe — NVMe support driver from MdeModulePkg. This driver is included in most firmwares
starting with Broadwell generation. For Haswell and earlier embedding it within the firmware may be more
favourable in case a NVMe SSD drive is installed.

e [UsbKbDxe — USB keyboard driver adding the support of AppleKeyMapAggregator protocols on top of a
custom USB keyboard driver implementation. This is an alternative to AptioInputFix, which may work
better or worse depending on the firmware.

e VirtualSmc/— UEFI SMC driver, required for proper FileVault 2 functionality and potentially other macOS

39

https://uefi.org/specifications
https://github.com/LongSoft/UEFITool/releases
https://github.com/acidanthera/AppleSupportPkg
https://github.com/acidanthera/AppleSupportPkg
https://github.com/acidanthera/AppleSupportPkg
https://github.com/acidanthera/AppleSupportPkg
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk
https://github.com/acidanthera/AppleSupportPkg
https://github.com/acidanthera/VirtualSMC

specifics. An alternative, named SMCHelper, is not compatible with VirtualSmc and OpenCore, which
is unaware of its specific interfaces. In case FakeSMC kernel extension is used, manual NVRAM variable
addition may be needed and VirtualSmc driver should still be used.

e VBoxHfs| — HFS file system driver with bless support. This driver is an alternative to a closed source
HFSP1lus driver commonly found in Apple firmwares. While it is feature complete, it is approximately 3 times
slower and is yet to undergo a security audit.

e XhciDxe| — XHCI USB controller support driver from MdeModulePkg. This driver is included in most
firmwares starting with Sandy Bridge generation. For earlier firmwares or legacy systems it may be used to
support external USB 3.0 PCI cards.

To compile the drivers from FianoGeore-BDIK-UDK (EDK II) use the same command you do normally use for
OpenCore compilation, but choose a corresponding package:

t ctome it - odks b UDK2016 DK

it clone https://github.com/acidanthera/audk UDK
cd UDK

source edksetup.sh

make -C BaseTools

build -a X64 -b RELEASE -t XCODE5 -p FatPkg/FatPkg.dsc

build -a X64 -b RELEASE -t XCODE5 -p MdeModulePkg/MdeModulePkg.dsc

3. Protocols
Type: plist dict
Failsafe: None
Description: Force builtin versions of select protocols described in [Protocols Properties| section below.

Note: all protocol instances are installed prior to driver loading.

4. Quirks
Type: plist dict
Failsafe: None
Description: Apply individual firmware quirks described in [Quirks Properties| section below.

11.3 Protocols Properties

1. AppleBootPolicy
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple Boot Policy protocol with a builtin version. This may be used to ensure APFS
compatibility on VMs or legacy Macs.

2. ConsoleControl
Type: plist boolean
Failsafe: false
Description: Replaces Console Control protocol with a builtin version.

macOS bootloader requires console control protocol for text output, which some firmwares miss. This option
is required to be set when the protocol is already available in the firmware, and other console control options
are used, such as IgnoreTextInGraphics, SanitiseClearScreen, and sometimes ConsoleBehaviourOs with
ConsoleBehaviourUi).

3. DataHub
Type: plist boolean
Failsafe: false
Description: Reinstalls Data Hub protocol with a builtin version. This will drop all previous properties if the
protocol was already installed.

4. DeviceProperties
Type: plist boolean
Failsafe: false
Description: Reinstalls Device Property protocol with a builtin version. This will drop all previous properties if
it was already installed. This may be used to ensure full compatibility on VMs or legacy Macs.

40

https://github.com/acidanthera/AppleSupportPkg
https://github.com/acidanthera/audk

11.4 Quirks Properties

1. AvoidHighAlloc
Type: plist boolean

Failsafe: false
Description: Advises allocators to avoid allocations above first 4 GBs of RAM.

This is a workaround for select board firmwares, namely GA-Z77P-D3 (rev. 1.1), failing to properly access higher
memory in UEFT Boot Services. On these boards this quirk is required for booting entries that need to allocate
large memory chunks, such as macOS DMG recovery entries. On unaffected boards it may cause boot failures,
and thus strongly not recommended. For known issues refer to acidanthera/bugtracker#449.

2. ExitBootServicesDelay
Type: plist integer
Failsafe: 0
Description: Adds delay in microseconds after EXIT_BOOT_SERVICES event.

This is a very ugly quirk to circumvent "Still waiting for root device" message on select APTIO IV firmwares,
namely ASUS Z87-Pro, when using FileVault 2 in particular. It seems that for some reason they execute code
in parallel to EXIT_BOOT_SERVICES, which results in SATA controller being inaccessible from macOS. A better
approach should be found in some future. Expect 3-5 seconds to be enough in case the quirk is needed.

3. IgnoreInvalidFlexRatio
Type: plist boolean
Failsafe: false
Description: Select firmwares, namely APTIO IV, may contain invalid values in MSR_FLEX_RATIO (0x194) MSR
register. These values may cause macOS boot failure on Intel platforms.

Note: While the option is not supposed to induce harm on unaffected firmwares, its usage is not recommended
when it is not required.

4. IgnoreTextInGraphics
Type: plist boolean
Failsafe: false
Description: Select firmwares output text onscreen in both graphics and text mode. This is normally unexpected,
because random text may appear over graphical images and cause UI corruption. Setting this option to true will
discard all text output when console control is in mode different from Text.

Note: While the option is not supposed to induce harm on unaffected firmwares, its usage is not recommended
when it is not required. This option may hide onscreen error messages. ConsoleControl may need to be set to
true for this to work.

5. ProvideConsoleGop
Type: plist boolean
Failsafe: false
Description: macOS bootloader requires GOP (Graphics Output Protocol) to be present on console handle.
This option will install it if missing.

6. ReleaseUsbOwnership
Type: plist boolean
Failsafe: false
Description: Attempt to detach USB controller ownership from the firmware driver. While most firmwares
manage to properly do that, or at least have an option for, select firmwares do not. As a result, operating system
may freeze upon boot. Not recommended unless required.

7. RequestBootVarRouting
Type: plist boolean
Failsafe: false

Description: Request NV RAM-driver{or-AptioMemoryFix)toredirectBoot prefixed variables from EFI_GLOBAL_VARIABLE_(

to OC_VENDOR_VARIABLE_GUID.

41

https://github.com/acidanthera/bugtracker/issues/449

12 Troubleshooting

12.1 Windows support
Can I install Windows?

While no official Windows support is provided, 64-bit UEFI Windows installations (Windows 8 and above) prepared
with Boot Camp are supposed to work. Third-party UEFT installations as well as systems partially supporting UEFI
boot, like Windows 7, might work with some extra precautions. Things to keep in mind:

o MBR (Master Boot Record) installations are legacy and will not be supported.

:0S5To install Windows, macOS, and OpenCore on the same drive is—eurrently
ssedHateryou can specify Windows bootloader path (\EFI\Microsoft\bootmgfw.efi

in BlessOverride section.

o All the modifications applied (to ACPI, NVRAM, SMBIOS, etc.) are supposed to be operating system agnostic,
i.e. apply equally regardless of the OS booted. This enables Boot Camp software experience on Windows.

e macOS requires the first partition to be EFI System Partition, and does not support the default Windows layout.
While OpenCore does have a |workaround| for this, it is highly recommend not to rely on it and install properly.

¢ Windows may need to be reactivated. To avoid it consider leaving SystemUUID field empty, so that the original
firmware UUID is used. Be warned, on old firmwares it may be invalid, i.e. not random. In case you still have
issues, consider using HWID or KMS38 license. The nuances of Windows activation are out of the scope of this
document and can be found online.

What additional software do I need?

To enable operating system switching and install relevant drivers in the majority of cases you will need Windows
support software from Boot Camp. For simplicity of the download process or when configuring an already installed
Windows version a third-party utility, Brigadier, can be used successfully. Note, that you may have to download and
install [7-Zip| prior to using Brigadier.

Remember to always use the latest version of Windows support software from Boot Camp, as versions prior to 6.1 do
not support APFS, and thus will not function correctly. To download newest software pass most recent Mac model
to Brigadier, for example ./brigadier.exe -m iMac19,1. To install Boot Camp on an unsupported Mac model
afterwards run PowerShell as Administrator and enter msiexec /i BootCamp.msi. In case you already have a previous
version of Boot Camp installed you will have to remove it first by running msiexec /x BootCamp.msi command.
BootCamp.msi file is located in BootCamp/Drivers/Apple directory and can be reached through Windows Explorer.

While Windows support software from Boot Camp solves most of compatibility problems, sometimes you may have to
address some of them manually:

o To invert mouse wheel scroll direction F1ipFlopWheel must be set to 1 as explained on SuperUserl

e RealTimeIsUniversal must be set to 1 to avoid time desync between Windows and macOS as explained on
SuperUser (this one is usually not needed).

o To access Apple filesystems like HF'S and APFS separate software may need to be installed. Some of the known
tools are: |Apple HFS+ driver| (hack for Windows 10), HFSExplorer, MacDrive, Paragon APFS, Paragon HFS+,
TransMac, etc. Remember to never ever attempt to modify Apple file systems from Windows as this often leads
to irrecoverable data loss.

Why do I see Basic data partition in Boot Camp Gentrel-Startup Disk control panel?

Boot Camp control panel uses GPT partition table to obtain each boot option name. After installing Windows
separately you will have to relabel the partition manually. This can be done with many tools including open-source
gdisk utility. Reference example:

PS C:\gdisk> .\gdisk64.exe \\.\physicaldriveO
GPT fdisk (gdisk) version 1.0.4

Command (7 for help): p

Disk \\.\physicaldrive0O: 419430400 sectors, 200.0 GiB
Sector size (logical): 512 bytes

43

https://github.com/acidanthera/bugtracker/issues/327
https://support.apple.com/boot-camp
https://github.com/timsutton/brigadier
https://www.7-zip.org
https://superuser.com/a/364353
https://superuser.com/q/494432
https://forums.macrumors.com/threads/apple-hfs-windows-driver-download.1368010/
https://forums.macrumors.com/threads/apple-hfs-windows-driver-download.1368010/page-4#post-24180079
http://www.catacombae.org/hfsexplorer
https://sourceforge.net/projects/gptfdisk

Disk identifier (GUID): DEC57EB1-B3B5-49B2-95F5-3B8C4D3E4E12
Partition table holds up to 128 entries

Main partition table begins at sector 2 and ends at sector 33
First usable sector is 34, last usable sector is 419430366
Partitions will be aligned on 2048-sector boundaries

Total free space is 4029 sectors (2.0 MiB)

Number Start (sector) End (sector) Size Code Name
1 2048 1023999 499.0 MiB 2700 Basic data partition
2 1024000 1226751 99.0 MiB EFO0 EFI system partition
3 1226752 1259519 16.0 MiB 0CO1 Microsoft reserved ..
4 1259520 419428351 199.4 GiB 0700 Basic data partition

Command (7 for help): c
Partition number (1-4): 4
Enter name: BOOTCAMP

Command (7 for help): w

Final checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING PARTITIONS!!
Do you want to proceed? (Y/N): Y

OK; writing new GUID partition table (GPT) to \\.\physicaldriveO.

Disk synchronization succeeded! The computer should now use the new partition table.
The operation has completed successfully.

Listing 3: Relabeling Windows volume

How to choose Windows BOOTCAMP with custom NTFS drivers?

Third-party drivers providing NTES support, such as NTFS-3G, Paragon NTES, Tuxera NTES or Seagate Paragon
Driver break certain macOS functionality, including Startup Disk preference pane normally used for operating system
selection, While the recommended option remains not to use such drivers as they commonly corrupt the filesystem, and
prefer the driver bundled with macOS with optional write support (\command or GUI), there still exist vendor-specific
workarounds for their products: Tuxera, Paragon, etc.

12.2 Debugging

Similar to other projects working with hardware OpenCore supports auditing and debugging. The use of NOOPT or

DEBUG build modes instead of RELEASE can produce a lot more debug output. With NOOPT source level debugging with
GDB or IDA Pro is also available. For GDB check |OcSupport Debug page. For IDA Pro you will need IDA Pro 7.3

or newer, refer to Debugging the XNU Kernel with IDA Pro| for more details.

To obtain the log during boot you can make the use of serial port debugging. Serial port debugging is enabled in
Mi’or onscreen with serial. OpenCore uses 115200 baud rate, 8 data bits, no parity, and 1 stop

For macOS your best choice are CP2102-based UART devices. Connect motherboard TX to USB UART GND,
WMNQ to USB UART RX. Use screen utility to get the output, or download GUL software, such as

CoolTerm.

Remember to enable COM port in firmware settings, and never use USB cables longer than 1 meter to avoid output
corruption. To add1t1onall enable XNU kernel serial output you will need debug=0x8 boot argument.
12.3 Tips and Tricks
1. How to debug boot failure?
Normally it is enough to obtain the actual error message. For this ensure that:

¢ You have a DEBUG or NOOPT version of OpenCore.
o Logging is enabled (1) and shown onscreen (2): Misc — Debug — Target = 3.

44

https://www.tuxera.com/community/open-source-ntfs-3g
https://www.seagate.com/support/software/paragon
https://www.seagate.com/support/software/paragon
https://support.apple.com/HT202796
http://osxdaily.com/2013/10/02/enable-ntfs-write-support-mac-os-x
https://mounty.app
https://www.tuxera.com/products/tuxera-ntfs-for-mac/faq
https://kb.paragon-software.com/article/6604
https://github.com/acidanthera/OcSupportPkg/tree/master/Debug
https://www.hex-rays.com/products/ida/support/tutorials/index.shtml
https://freeware.the-meiers.org

o Logged messages from at least DEBUG_ERROR (0x80000000), DEBUG_WARN (0x00000002), and DEBUG_INFO
(0x00000040) levels are visible onscreen: Misc — Debug — DisplayLevel = 0x80000042.

o Critical error messages, like DEBUG_ERROR, stop booting: Misc — Security — HaltLevel = 0x80000000.

e Watch Dog is disabled to prevent automatic reboot: YefiMisc — QuirksDebug — DisableWatchDog =
true.

o Boot Picker (entry selector) is enabled: Misc — Boot — ShowPicker = true.

If there is no obvious error, check the available hacks in Quirks sections one by one.
. How to customise boot entries?

OpenCore follows standard Apple Bless model and extracts the entry name from .contentDetails and
.disk_label.contentDetails files in the booter directory if present. These files contain an ASCII string
with an entry title, which may then be customised by the user.

. What is the simplest way to install macOS?

Copy online recovery image (*.dmg and *.chunklist files) to com.apple.recovery.boot directory on a FAT32
partition with OpenCore. Load OpenCore Boot Picker and choose the entry, it will have a (dmg) suffix. Custom
name may be created by providing .contentDetails file.

To download recovery online you may use Recovery| tool from |OcSupportPkg,.

. Why do online recovery images (*.dmg fail to load?

This may be caused by missing HFS+ driver, as all presently known recovery volumes have HFS+ filesystem.
Another cause may be bu firmware allocator, which can be worked around with AvoidHighAlloc UEFI quirk.

. Can I use this on Apple hardware or virtual machines?

Sure, most relatively modern Mac models including MacPro5,1 and virtual machines are fully supported. Even
though there are little to none specific details relevant to Mac hardware, some ongoing instructions can be found
in acidanthera/bugtracker#377.

. Why do Find&Replace patches must equal in length?

For machine code (x86 code) it is not possible to do such replacements due to relative addressing. For ACPI
code this is risky, and is technically equivalent to ACPI table replacement, thus not implemented. More detailed
explanation can be found on |AppleLife.ru.

. How can I migrate from AptioMemoryFix?

Behaviour similar to that of AptioMemoryFix can be obtained by installing FwRuntimeServices driver and
enabling the quirks listed below. Please note, that most of these are not necessary to be enabled. Refer to their
individual descriptions in this document for more details.

* ProvideConsoleGop (UEFL quirk)
¢ DiscardHibernatelap

e EnableWriteUnprotector

¢ ForceExitBootServices

e ProtectCsmRegion

¢ ProvideCustomSlide

e SetupVirtualMa
e ShrinkMemoryMa

45

https://github.com/acidanthera/OcSupportPkg/tree/master/Utilities/Recovery
https://github.com/acidanthera/OcSupportPkg
https://github.com/acidanthera/bugtracker/issues/377
https://en.wikipedia.org/w/index.php?title=Relative_addressing
https://applelife.ru/posts/819790

	Introduction
	Known defects

	
	Generic Terms
	DIFkeeppageDIFchangeDIFkeeppageDIFchangeDIFkeeppageDIFchangeConfigurationDIFkeeppageDIFchange
	Configuration Terms
	Configuration Processing
	Configuration Structure
	Setup
	Directory Structure
	Installation and Upgrade
	Contribution

	ACPI
	Introduction
	Properties
	Add Properties
	Quirks Properties

	Booter
	Introduction
	Properties
	Quirks Properties

	Block Properties
	Emulate Properties
	Patch Properties
	Quirks Properties
	Misc
	Introduction
	Properties
	Boot Properties
	Security Properties
	DIFkeeppageDIFchangeDIFkeeppageDIFchangeDIFkeeppageDIFchangeEntry DIFkeeppageDIFchangeProperties

	NVRAM
	Introduction
	Properties

	UEFI
	Introduction
	Properties
	Protocols Properties
	Quirks Properties

	Troubleshooting
	Windows support
	Debugging
	Tips and Tricks

