
OpenCore

Reference Manual (0.5.2
:::
.3)

[2019.11.01]

Copyright ©2018-2019 vit9696

5 Booter

5.1 Introduction
This section allows to apply different kinds of UEFI modifications on Apple bootloader (boot.efi). The modifications
currently provide various patches and environment alterations for different firmwares. Some of these features were
originally implemented as a part of AptioMemoryFix.efi, which is no longer maintained. See Tips and Tricks section
for migration steps.

If you are using this for the first time on a customised firmware, there is a list of checks to do first. Prior to starting
please ensure that you have:

• Most up-to-date UEFI firmware (check your motherboard vendor website).
• Fast Boot and Hardware Fast Boot disabled in firmware settings if present.
• Above 4G Decoding or similar enabled in firmware settings if present. Note, that on some motherboards (notably

ASUS WS-X299-PRO) this option causes adverse effects, and must be disabled. While no other motherboards
with the same issue are known, consider this option to be first to check if you have erratic boot failures.

• DisableIoMapper quirk enabled, or VT-d disabled in firmware settings if present, or ACPI DMAR table dropped.
• No ‘slide‘ boot argument present in NVRAM or anywhere else. It is not necessary unless you cannot boot at all

or see No slide values are usable! Use custom slide! message in the log.
• CFG Lock (MSR 0xE2 write protection) disabled in firmware settings if present. Cconsider patching it if you have

enough skills and no option is available. See VerifyMsrE2 nots for more details.
• CSM (Compatibility Support Module) disabled in firmware settings if present. You may need to flash GOP ROM

on NVIDIA 6xx/AMD 2xx or older. Use GopUpdate or AMD UEFI GOP MAKER in case you are not sure how.
• EHCI/XHCI Hand-off enabled in firmware settings only if boot stalls unless USB devices are disconnected.
• VT-x, Hyper Threading, Execute Disable Bit enabled in firmware settings if present.
• While it may not be required, sometimes you have to disable Thunderbolt support, Intel SGX, and Intel

Platform Trust in firmware settings present.

When debugging sleep issues you may want to (temporarily) disable Power Nap and automatic power off, which appear
to sometimes cause wake to black screen or boot loop issues on older platforms. The particular issues may vary, but in
general you should check ACPI tables first. Here is an example of a bug found in some Z68 motherboards. To turn
Power Nap and the others off run the following commands in Terminal:

sudo pmset autopoweroff 0
sudo pmset powernap 0
sudo pmset standby 0

Note: These settings may reset at hardware change and in certain other circumstances. To view their current state use
pmset -g command in Terminal.

5.2 Properties
1.

::::::::::::::
MmioWhitelist
:::::
Type

:
:
::::::
plist

::::::
array

::::::::::::
Description:

:::::::::
Designed

::
to

:::
be

:::::
filled

::::
with

::::::
plist

:::::
dict

::::::
values,

:::::::::
describing

:::::::::
addresses

::::::
critical

:::
for

:::::::::
particular

:::::::::
firmware

::::::::::
functioning

:::::
when

::::::::::::::::::
DevirtualiseMmio

:::::
quirk

::
is

::
in

::::
use.

::::
See

:
MmioWhitelist Properties

::::::
section

::::::
below.

:

2. Quirks
Type: plist dict
Description: Apply individual booter quirks described in Quirks Properties section below.

5.3
::::::::::::::::::
MmioWhitelist

:::::::::::::
Properties

1.
:::::::
Address
:::::
Type

:
:
::::::
plist

::::::::
integer

:::::::
Failsafe

:
:
::
0

::::::::::::
Description:

:::::::::::
Exceptional

:::::::
MMIO

::::::::
address,

::::::
which

:::::::
memory

::::::::::
descriptor

::::::
should

:::
be

:::
left

::::::::::
virtualised

::::::::::::
(unchanged)

:::
by

:::::::::::::::::
DevirtualiseMmio.

:::::
This

::::::
means

::::
that

::::
the

::::::::
firmware

::::
will

::
be

::::
able

:::
to

:::::::
directly

::::::::::::
communicate

::::
with

::::
this

::::::::
memory

::::::
region

::::::
during

:::::::::
operating

::::::
system

:::::::::::
functioning,

::::::::
because

:::
the

::::::
region

::::
this

:::::
value

::
is
:::
in

:::
will

:::
be

::::::::
assigned

::
a

::::::
virtual

::::::::
address.

:

12

https://github.com/acidanthera/AptioFixPkg
https://github.com/LongSoft/UEFITool/blob/master/UEFIPatch/patches.txt
https://github.com/acidanthera/AppleSupportPkg#verifymsre2
https://www.win-raid.com/t892f16-AMD-and-Nvidia-GOP-update-No-requests-DIY.html#msg15730
http://www.insanelymac.com/forum/topic/299614-asus-eah6450-video-bios-uefi-gop-upgrade-and-gop-uefi-binary-in-efi-for-many-ati-cards/page-1#entry2042163
http://www.insanelymac.com/forum/topic/329624-need-cmos-reset-after-sleep-only-after-login/#entry2534645

:::
The

:::::::::
addresses

:::::::
written

::::
here

:::::
must

::
be

::::
part

::
of

::::
the

:::::::
memory

:::::
map,

::::
have

:::::::::::::::::::
EfiMemoryMappedIO

::::
type

::::
and

:::::::::::::::::::
EFI_MEMORY_RUNTIME

::::::::
attribute

:::::::
(highest

::::
bit)

::::
set.

:::
To

::::
find

::::
the

:::
list

::
of

::::
the

::::::::::
candidates

:::
the

::::::
debug

:::
log

::::
can

:::
be

:::::
used.

:

2.
:::::::
Comment
:::::
Type

:
:
::::::
plist

:::::::
string

:::::::
Failsafe

:
:
:::::::
Empty

:::::
string

::::::::::::
Description:

:::::::::
Arbitrary

::::::
ASCII

::::::
string

::::
used

::
to

:::::::
provide

:::::::
human

:::::::
readable

:::::::::
reference

::
for

::::
the

:::::
entry.

::
It

::
is

::::::::::::::
implementation

::::::
defined

::::::::
whether

::::
this

:::::
value

::
is

:::::
used.

:

3.
:::::::
Enabled
:::::
Type

:
:
::::::
plist

::::::::
boolean

:::::::
Failsafe

:
:
::::::
false

::::::::::::
Description:

:::::
This

:::::::
address

::::
will

:::
be

:::::::::::
devirtualised

::::::
unless

:::
set

:::
to

:::::
true.

:

5.4 Quirks Properties
1. AvoidRuntimeDefrag

Type: plist boolean
Failsafe: false
Description: Protect from boot.efi runtime memory defragmentation.

This option fixes UEFI runtime services (date, time, NVRAM, power control, etc.) support on many firmwares
using SMM backing for select services like variable storage. SMM may try to access physical addresses, but they
get moved by boot.efi.

Note: Most but Apple and VMware firmwares need this quirk.

2. DevirtualiseMmio
Type: plist boolean
Failsafe: false
Description: Remove runtime attribute from select MMIO regions.

This option reduces stolen memory footprint from the memory map by removing runtime bit for known memory
regions. This quirk may result in the increase of KASLR slides available, but is not necessarily compatible with
the target board.

::
In

:::::::
general

::::
this

::::
frees

:::::
from

:::
64

::
to

::::
256

::::::::::
megabytes

::
of

::::::::
memory

::::::::
(present

::
in

:::
the

::::::
debug

:::::
log),

::::
and

:::
on

::::
some

:::::::::
platforms

::
it
::
is

:::
the

:::::
only

::::
way

::
to

:::::
boot

:::::::
macOS,

::::::
which

:::::::::
otherwise

::::
fails

::::
with

:::::::::
allocation

:::::
error

::
at

::::::::::
bootloader

::::::
stage.

Note: This option is generally useful on APTIO V firmwares (Broadwell and newer).
::
all

:::::::::
firmwares

:::::::
except

:::::
some

::::
very

:::
old

:::::
ones,

:::
like

::::::
Sandy

:::::::
Bridge.

::::
On

:::::
select

:::::::::
firmwares

::
it

::::
may

:::::::
require

:
a
::::
list

::
of

::::::::::
exceptional

:::::::::
addresses

::::
that

::::
still

:::::
need

::
to

:::
get

:::::
their

:::::::
virtual

:::::::::
addresses

:::
for

::::::
proper

:::::::::
NVRAM

::::
and

::::::::::
hibernation

::::::::::::
functioning.

::::
Use

::::::::::::::
MmioWhitelist

::::::
section

:::
to

::
do

:::::
this.

3. DisableSingleUser
Type: plist boolean
Failsafe: false
Description: Disable single user mode.

This is a security option allowing one to restrict single user mode usage by ignoring CMD+S hotkey and -s boot
argument. The behaviour with this quirk enabled is supposed to match T2-based model behaviour. Read this
article to understand how to use single user mode with this quirk enabled.

4. DisableVariableWrite
Type: plist boolean
Failsafe: false
Description: Protect from macOS NVRAM write access.

This is a security option allowing one to restrict NVRAM access in macOS. This quirk requires OC_FIRMWARE_RUNTIME
protocol implemented in FwRuntimeServices.efi.

Note: This quirk can also be used as an ugly workaround to buggy UEFI runtime services implementations that
fail to write variables to NVRAM and break the rest of the operating system.

13

https://support.apple.com/HT201573
https://support.apple.com/HT201573

3. AppleXcpmExtraMsrs
Type: plist boolean
Failsafe: false
Description: Disables multiple MSR access critical for select CPUs, which have no native XCPM support.

This is normally used in conjunction with Emulate section on Haswell-E, Broadwell-E, Skylake-X, and similar
CPUs. More details on the XCPM patches are outlined in acidanthera/bugtracker#365.

Note: Additional not provided patches will be required for Ivy Bridge or Pentium CPUs. It is recommended to
use AppleIntelCpuPowerManagement.kext for the former.

4. CustomSMBIOSGuid
Type: plist boolean
Failsafe: false
Description: Performs GUID patching for UpdateSMBIOSMode Custom mode. Usually relevant for Dell laptops.

5. DisableIoMapper
Type: plist boolean
Failsafe: false
Description: Disables IOMapper support in XNU (VT-d), which may conflict with the firmware implementation.

Note: This option is a preferred alternative to dropping DMAR ACPI table and disabling VT-d in firmware
preferences, which does not break VT-d support in other systems in case they need it.

6. ExternalDiskIcons
Type: plist boolean
Failsafe: false
Description: Apply icon type patches to AppleAHCIPort.kext to force internal disk icons for all AHCI disks.

Note: This option should avoided whenever possible. Modern firmwares usually have compatible AHCI controllers.

7. LapicKernelPanic
Type: plist boolean
Failsafe: false
Description: Disables kernel panic on LAPIC interrupts.

8. PanicNoKextDump
Type: plist boolean
Failsafe: false
Description: Prevent kernel from printing kext dump in the panic log preventing from observing panic details.
Affects 10.13 and above.

9.
::::::::::::::::::::::::
PowerTimeoutKernelPanic
:::::
Type

:
:
::::::
plist

::::::::
boolean

:::::::
Failsafe

:
:
::::::
false

::::::::::::
Description:

::::::::
Disables

::::::
kernel

:::::
panic

:::
on

:::::::::::::
setPowerState

::::::::
timeout.

:

:::
An

:::::::::
additional

::::::::
security

::::::::
measure

::::
was

::::::
added

:::
to

:::::::
macOS

::::::::
Catalina

:::::::
(10.15)

:::::::
causing

::::::
kernel

::::::
panic

:::
on

::::::
power

:::::::
change

:::::::
timeout

:::
for

::::::
Apple

:::::::
drivers.

:::::::::::
Sometimes

::
it
:::::
may

::::::
cause

:::::
issues

:::
on

:::::::::::::
misconfigured

::::::::::
hardware,

:::::::
notably

:::::::
digital

::::::
audio,

:::::
which

::::::::::
sometimes

::::
fails

:::
to

:::::
wake

:::
up.

::::
For

::::::
debug

:::::::
kernels

:::::::::::::::::::::::
setpowerstate_panic=0

::::
boot

:::::::::
argument

:::::::
should

:::
be

:::::
used,

:::::
which

::
is

:::::::::
otherwise

:::::::::
equivalent

:::
to

::::
this

::::::
quirk.

10. ThirdPartyTrim
Type: plist boolean
Failsafe: false
Description: Patch IOAHCIBlockStorage.kext to force TRIM command support on AHCI SSDs.

Note: This option should avoided whenever possible. NVMe SSDs are compatible without the change. For AHCI
SSDs on modern macOS version there is a dedicated built-in utility called trimforce. Starting from 10.15 this
utility creates EnableTRIM variable in APPLE_BOOT_VARIABLE_GUID namespace with 01 00 00 00 value.

11. XhciPortLimit
Type: plist boolean
Failsafe: false

21

https://github.com/acidanthera/bugtracker/issues/365

8 Misc

8.1 Introduction
This section contains miscellaneous configuration entries for OpenCore behaviour that does not go to any other sections

8.2 Properties
1. Boot

Type: plist dict
Description: Apply boot configuration described in Boot Properties section below.

2. BlessOverride
Type: plist array
Description: Add custom scanning paths through bless model.

Designed to be filled with plist string entries containing absolute UEFI paths to customised bootloaders, for
example, \EFI\Microsoft\

:::::
Boot\bootmgfw.efi for Microsoft bootloader. This allows unusual boot paths to be

automaticlly discovered by the boot picker. Designwise they are equivalent to predefined blessed path, such as
\System\Library\CoreServices\boot.efi, but unlike predefined bless paths they have highest priority.

3. Debug
Type: plist dict
Description: Apply debug configuration described in Debug Properties section below.

4. Entries
Type: plist array
Description: Add boot entries to boot picker.

Designed to be filled with plist dict values, describing each load entry. See Entry Properties section below.

5. Security
Type: plist dict
Description: Apply security configuration described in Security Properties section below.

6. Tools
Type: plist array
Description: Add tool entries to boot picker.

Designed to be filled with plist dict values, describing each load entry. See Entry Properties section below.

Note: Select tools, for example, UEFI Shell are very dangerous and MUST NOT appear in production
configurations, especially in vaulted ones and protected with secure boot, as they may be used to easily bypass
secure boot chain.

8.3 Boot Properties
1. ConsoleMode

Type: plist string
Failsafe: Empty string
Description: Sets console output mode as specified with the WxH (e.g. 80x24) formatted string. Set to empty
string not to change console mode. Set to Max to try to use largest available console mode.

Note: This field is best to be left empty on most firmwares.

2. ConsoleBehaviourOs
Type: plist string
Failsafe: Empty string
Description: Set console control behaviour upon operating system load.

Console control is a legacy protocol used for switching between text and graphics screen output. Some firmwares
do not provide it, yet select operating systems require its presence, which is what ConsoleControl UEFI protocol
is for.

23

https://github.com/acidanthera/OpenCoreShell

• CMD+S — single user mode.
• CMD+S+MINUS — disable KASLR slide, requires disabled SIP.
• CMD+V — verbose mode.
• Shift — safe mode.

7. Resolution
Type: plist string
Failsafe: Empty string
Description: Sets console output screen resolution.

• Set to WxH@Bpp (e.g. 1920x1080@32) or WxH (e.g. 1920x1080) formatted string to request custom resolution
from GOP if available.

• Set to empty string not to change screen resolution.
• Set to Max to try to use largest available screen resolution.

On HiDPI screens APPLE_VENDOR_VARIABLE_GUID UIScale NVRAM variable may need to be set to 02 to enable
HiDPI scaling in FileVault 2 UEFI password interface and boot screen logo. Refer to Recommended Variables
section for more details.

Note: This will fail when console handle has no GOP protocol. When the firmware does not provide it, it can be
added with ProvideConsoleGop UEFI quirk set to true.

8. ShowPicker
Type: plist boolean
Failsafe: false
Description: Show simple boot picker to allow boot entry selection.

9. Timeout
Type: plist integer, 32 bit
Failsafe: 0
Description: Timeout in seconds in boot picker before automatic booting of the default boot entry.

::::
Use

:
0
:::
to

::::::
disable

::::::
timer.

:

10. UsePicker
Type: plist boolean
Failsafe: false
Description: Use OpenCore built-in boot picker for boot management.

UsePicker set to false entirely disables all boot management in OpenCore except policy enforcement. In this
case a custom user interface may utilise OcSupportPkg OcBootManagementLib to implement a user friendly boot
picker oneself. Reference example of external graphics interface is provided in ExternalUi test driver.

OpenCore built-in boot picker contains a set of actions chosen during the boot process. The list of supported
actions is similar to Apple BDS and currently consists of the following options:

• Default — this is the default option, and it lets OpenCore built-in boot picker to loads the default boot
option as specified in Startup Disk preference pane.

• ShowPicker — this option forces picker to show. Normally it can be achieved by holding OPT key during
boot. Setting ShowPicker to true will make ShowPicker the default option.

• ResetNvram — this option performs select UEFI variable erase and is normally achieved by holding
CMD+OPT+P+R key combination during boot. Another way to erase UEFI variables is to choose Reset NVRAM
in the picker. This option requires AllowNvramReset to be set to true.

• BootApple — this options performs booting to the first found Apple operating system unless the default
chosen operating system is already made by Apple. Hold X key to choose this option.

• BootAppleRecovery — this option performs booting to Apple operating system recovery. Either the one
related to the default chosen operating system, or first found in case default chosen operating system is not
made by Apple or has no recovery. Hold CMD+R key combination to choose this option.

Note: activated KeySupport, UsbKbDxe, or similar driver is required for key handling to work. On many firmwares
it is not possible to get all the keys function.

In addition to OPT OpenCore supports Escape key ShowPicker. This key exists for firmwares with PS/2 keyboards
that fail to report held OPT key and require continual presses of Escape key to enter the boot menu.

25

https://github.com/acidanthera/OcSupportPkg
https://github.com/acidanthera/OcSupportPkg/tree/master/Tests/ExternalUi
https://support.apple.com/HT202796

File logging will create a file named opencore-YYYY-MM-DD-HHMMSS.txt at EFI volume root with log contents
(the upper case letter sequence is replaced with date and time from the firmware). Please be warned that some
file system drivers present in firmwares are not reliable, and may corrupt data when writing files through UEFI.
Log is attempted to be written in the safest manner, and thus is very slow. Ensure that DisableWatchDog is set
to true when you use a slow drive.

8.5 Security Properties
1. AllowNvramReset

Type: plist boolean
Failsafe: false
Description: Allow CMD+OPT+P+R handling and enable showing NVRAM Reset entry in boot picker.

2. ExposeSensitiveData
Type: plist integer
Failsafe: 2

:::
0x6

Description: Sensitive data exposure bitmask (sum) to operating system.

• 0x01 — Expose printable booter path as an UEFI variable.
• 0x02 — Expose OpenCore version as an UEFI variable.
•

::::
0x04

::
—

:::::::
Expose

:::::::::
OpenCore

:::::::
version

::
in

:::::
boot

::::::
picker

:::::
menu

:::::
title.

:

Exposed booter path points to OpenCore.efi or its booter depending on the load order. To obtain booter path
use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-path

To use booter path for mounting booter volume use the following command in macOS:

u=$(nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-path | sed 's/.*GPT,\([^,]*\),.*/\1/'); \
if ["$u" != ""]; then sudo diskutil mount $u ; fi

To obtain OpenCore version use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:opencore-version

3. HaltLevel
Type: plist integer, 64 bit
Failsafe: 0x80000000 (DEBUG_ERROR)
Description: EDK II debug level bitmask (sum) causing CPU to halt (stop execution) after obtaining a message
of HaltLevel. Possible values match DisplayLevel values.

4. RequireSignature
Type: plist boolean
Failsafe: true
Description: Require vault.sig signature file for vault.plist in OC directory.

This file should contain a raw 256 byte RSA-2048 signature from SHA-256 hash of vault.plist. The signature
is verified against the public key embedded into OpenCore.efi.

To embed the public key you should do either of the following:

• Provide public key during the OpenCore.efi compilation in OpenCoreVault.c file.
• Binary patch OpenCore.efi replacing zeroes with the public key between =BEGIN OC VAULT= and ==END

OC VAULT== ASCII markers.

RSA public key 520 byte format description can be found in Chromium OS documentation. To convert public
key from X.509 certificate or from PEM file use RsaTool.

Note: vault.sig is used regardless of this option when public key is embedded into OpenCore.efi. Setting it
to true will only ensure configuration sanity, and abort the boot process when public key is not set but was
supposed to be used for verification.

27

https://github.com/acidanthera/OpenCorePkg/blob/master/Platform/OpenCore/OpenCoreVault.c
https://github.com/acidanthera/OcSupportPkg/tree/master/Utilities/CreateVault

11 UEFI

11.1 Introduction
UEFI (Unified Extensible Firmware Interface) is a specification that defines a software interface between an operating
system and platform firmware. This section allows to load additional UEFI modules and/or apply tweaks for the onboard
firmware. To inspect firmware contents, apply modifications and perform upgrades UEFITool and supplementary
utilities can be used.

11.2 Properties
1. ConnectDrivers

Type: plist boolean
Failsafe: false
Description: Perform UEFI controller connection after driver loading. This option is useful for loading filesystem
drivers, which usually follow UEFI driver model, and may not start by themselves. While effective, this option is
not necessary with e.g. APFS loader driver, and may slightly slowdown the boot.

2. Drivers
Type: plist array
Failsafe: None
Description: Load selected drivers from OC/Drivers directory.

Designed to be filled with string filenames meant to be loaded as UEFI drivers. Depending on the firmware a
different set of drivers may be required. Loading an incompatible driver may lead your system to unbootable
state or even cause permanent firmware damage. Some of the known drivers include:

• ApfsDriverLoader — APFS file system bootstrap driver adding the support of embedded APFS drivers in
bootable APFS containers in UEFI firmwares.

• FwRuntimeServices — OC_FIRMWARE_RUNTIME protocol implementation that increases the security of Open-
Core and Lilu by supporting read-only and write-only NVRAM variables. Some quirks, like RequestBootVarRouting,
require this driver for proper function. Due to the nature of being a runtime driver, i.e. functioning in
parallel with the target operating system, it cannot be implemented within OpenCore itself.

• EnhancedFatDxe — FAT filesystem driver from FatPkg. This driver is embedded in all UEFI firmwares,
and cannot be used from OpenCore. It is known that multiple firmwares have a bug in their FAT support
implementation, which leads to corrupted filesystems on write attempt. Embedding this driver within the
firmware may be required in case writing to EFI partition is needed during the boot process.

• NvmExpressDxe — NVMe support driver from MdeModulePkg. This driver is included in most firmwares
starting with Broadwell generation. For Haswell and earlier embedding it within the firmware may be more
favourable in case a NVMe SSD drive is installed.

• UsbKbDxe — USB keyboard driver adding the support of AppleKeyMapAggregator protocols on top of a
custom USB keyboard driver implementation. This is an alternative to builtin KeySypport

:::::::::::
KeySupport,

which may work better or worse depending on the firmware.
• VirtualSmc — UEFI SMC driver, required for proper FileVault 2 functionality and potentially other macOS

specifics. An alternative, named SMCHelper, is not compatible with VirtualSmc and OpenCore, which
is unaware of its specific interfaces. In case FakeSMC kernel extension is used, manual NVRAM variable
addition may be needed and VirtualSmc driver should still be used.

• VBoxHfs — HFS file system driver with bless support. This driver is an alternative to a closed source
HFSPlus driver commonly found in Apple firmwares. While it is feature complete, it is approximately 3 times
slower and is yet to undergo a security audit.

• XhciDxe — XHCI USB controller support driver from MdeModulePkg. This driver is included in most
firmwares starting with Sandy Bridge generation. For earlier firmwares or legacy systems it may be used to
support external USB 3.0 PCI cards.

To compile the drivers from UDK (EDK II) use the same command you do normally use for OpenCore compilation,
but choose a corresponding package:

git clone https://github.com/acidanthera/audk UDK
cd UDK
source edksetup.sh

41

https://uefi.org/specifications
https://github.com/LongSoft/UEFITool/releases
https://github.com/acidanthera/AppleSupportPkg
https://github.com/acidanthera/AppleSupportPkg
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk
https://github.com/acidanthera/AppleSupportPkg
https://github.com/acidanthera/VirtualSMC
https://github.com/acidanthera/AppleSupportPkg
https://github.com/acidanthera/audk

large memory chunks, such as macOS DMG recovery entries. On unaffected boards it may cause boot failures,
and thus strongly not recommended. For known issues refer to acidanthera/bugtracker#449.

2. ExitBootServicesDelay
Type: plist integer
Failsafe: 0
Description: Adds delay in microseconds after EXIT_BOOT_SERVICES event.

This is a very ugly quirk to circumvent "Still waiting for root device" message on select APTIO IV firmwares,
namely ASUS Z87-Pro, when using FileVault 2 in particular. It seems that for some reason they execute code
in parallel to EXIT_BOOT_SERVICES, which results in SATA controller being inaccessible from macOS. A better
approach should be found in some future. Expect 3-5 seconds to be enough in case the quirk is needed.

3. IgnoreInvalidFlexRatio
Type: plist boolean
Failsafe: false
Description: Select firmwares, namely APTIO IV, may contain invalid values in MSR_FLEX_RATIO (0x194) MSR
register. These values may cause macOS boot failure on Intel platforms.

Note: While the option is not supposed to induce harm on unaffected firmwares, its usage is not recommended
when it is not required.

4. IgnoreTextInGraphics
Type: plist boolean
Failsafe: false
Description: Select firmwares output text onscreen in both graphics and text mode. This is normally unexpected,
because random text may appear over graphical images and cause UI corruption. Setting this option to true will
discard all text output when console control is in mode different from Text.

Note: While the option is not supposed to induce harm on unaffected firmwares, its usage is not recommended
when it is not required. This option may hide onscreen error messages. ConsoleControl may need to be set to
true for this to work.

5. ReplaceTabWithSpace
Type: plist boolean
Failsafe: false
Description: Some firmwares do not print tab characters or even everything that follows them, causing difficulties
or inability to use the UEFI Shell builtin text editor to edit property lists and other documents. This option
makes the console output spaces instead of tabs.

Note: ConsoleControl may need to be set to true for this to work.

6. ProvideConsoleGop
Type: plist boolean
Failsafe: false
Description: macOS bootloader requires GOP (Graphics Output Protocol) to be present on console handle.
This option will install it if missing.

7.
:::::::::::::::::::::
ReconnectOnResChange
:::::
Type

:
:
::::::
plist

::::::::
boolean

:::::::
Failsafe

:
:
::::::
false

::::::::::::
Description:

::::::::::
Reconnect

:::::::
console

::::::::::
controllers

::::
after

:::::::::
changing

::::::
screen

::::::::::
resolution.

:

:::
On

:::::
some

:::::::::
firmwares

:::::
when

::::::
screen

:::::::::
resolution

::
is

::::::::
changed

:::
via

:::::
GOP,

::
it
::
is
::::::::
required

::
to

:::::::::
reconnect

::::
the

::::::::::
controllers,

::::::
which

:::::::
produce

:::
the

:::::::
console

::::::::
protocols

:::::::
(simple

::::
text

:::::
out).

::::::::::
Otherwise

::::
they

:::
will

::::
not

:::::::
produce

::::
text

::::::
based

::
on

:::
the

::::
new

::::::::::
resolution.

::::
Note

:
:
:::
On

:::::::
several

::::::
boards

::::
this

:::::
logic

::::
may

::::::
result

::
in

::::::
black

::::::
screen

:::::
when

:::::::::
launching

::::::::::
OpenCore

::::
from

:::::
Shell

::::
and

:::::
thus

::
it

:
is
:::::::::
optional.

:::
In

:::::::
versions

:::::
prior

:::
to

:::::
0.5.2

::::
this

::::::
option

::::
was

::::::::::
mandatory

::::
and

::::
not

::::::::::::
configurable.

:::::::
Please

::
do

::::
not

::::
use

::::
this

:::::
unless

:::::::::
required.

:

8. ReleaseUsbOwnership
Type: plist boolean
Failsafe: false

45

https://github.com/acidanthera/bugtracker/issues/449

12 Troubleshooting

12.1 Windows support
Can I install Windows?

While no official Windows support is provided, 64-bit UEFI Windows installations (Windows 8 and above) prepared
with Boot Camp are supposed to work. Third-party UEFI installations as well as systems partially supporting UEFI
boot, like Windows 7, might work with some extra precautions. Things to keep in mind:

• MBR (Master Boot Record) installations are legacy and will not be supported.

• To install Windows, macOS, and OpenCore on the same drive you can specify Windows bootloader path
(\EFI\Microsoft\

::::::
Boot\bootmgfw.efi) in BlessOverride section.

• All the modifications applied (to ACPI, NVRAM, SMBIOS, etc.) are supposed to be operating system agnostic,
i.e. apply equally regardless of the OS booted. This enables Boot Camp software experience on Windows.

• macOS requires the first partition to be EFI System Partition, and does not support the default Windows layout.
While OpenCore does have a workaround for this, it is highly recommend not to rely on it and install properly.

• Windows may need to be reactivated. To avoid it consider leaving SystemUUID field empty, so that
::::::
setting

::::::::::::
SystemUUID

::
to

:
the original firmware UUIDis used. Be warned, on old firmwares it may be invalid, i.e. not

random. In case you still have issues, consider using HWID or KMS38 license. The nuances of Windows activation
are out of the scope of this document and can be found online.

What additional software do I need?

To enable operating system switching and install relevant drivers in the majority of cases you will need Windows
support software from Boot Camp. For simplicity of the download process or when configuring an already installed
Windows version a third-party utility, Brigadier, can be used successfully. Note, that you may have to download and
install 7-Zip prior to using Brigadier.

Remember to always use the latest version of Windows support software from Boot Camp, as versions prior to 6.1 do
not support APFS, and thus will not function correctly. To download newest software pass most recent Mac model
to Brigadier, for example ./brigadier.exe -m iMac19,1. To install Boot Camp on an unsupported Mac model
afterwards run PowerShell as Administrator and enter msiexec /i BootCamp.msi. In case you already have a previous
version of Boot Camp installed you will have to remove it first by running msiexec /x BootCamp.msi command.
BootCamp.msi file is located in BootCamp/Drivers/Apple directory and can be reached through Windows Explorer.

While Windows support software from Boot Camp solves most of compatibility problems, sometimes you may have to
address some of them manually:

• To invert mouse wheel scroll direction FlipFlopWheel must be set to 1 as explained on SuperUser.

• RealTimeIsUniversal must be set to 1 to avoid time desync between Windows and macOS as explained on
SuperUser (this one is usually not needed).

• To access Apple filesystems like HFS and APFS separate software may need to be installed. Some of the known
tools are: Apple HFS+ driver (hack for Windows 10), HFSExplorer, MacDrive, Paragon APFS, Paragon HFS+,
TransMac, etc. Remember to never ever attempt to modify Apple file systems from Windows as this often leads
to irrecoverable data loss.

Why do I see Basic data partition in Boot Camp Startup Disk control panel?

Boot Camp control panel uses GPT partition table to obtain each boot option name. After installing Windows
separately you will have to relabel the partition manually. This can be done with many tools including open-source
gdisk utility. Reference example:

PS C:\gdisk> .\gdisk64.exe \\.\physicaldrive0
GPT fdisk (gdisk) version 1.0.4

Command (? for help): p
Disk \\.\physicaldrive0: 419430400 sectors, 200.0 GiB
Sector size (logical): 512 bytes
Disk identifier (GUID): DEC57EB1-B3B5-49B2-95F5-3B8C4D3E4E12

47

https://github.com/acidanthera/bugtracker/issues/327
https://support.apple.com/boot-camp
https://github.com/timsutton/brigadier
https://www.7-zip.org
https://superuser.com/a/364353
https://superuser.com/q/494432
https://forums.macrumors.com/threads/apple-hfs-windows-driver-download.1368010/
https://forums.macrumors.com/threads/apple-hfs-windows-driver-download.1368010/page-4#post-24180079
http://www.catacombae.org/hfsexplorer
https://sourceforge.net/projects/gptfdisk

• Logging is enabled (1) and shown onscreen (2): Misc → Debug → Target = 3.
• Logged messages from at least DEBUG_ERROR (0x80000000), DEBUG_WARN (0x00000002), and DEBUG_INFO

(0x00000040) levels are visible onscreen: Misc → Debug → DisplayLevel = 0x80000042.
• Critical error messages, like DEBUG_ERROR, stop booting: Misc → Security → HaltLevel = 0x80000000.
• Watch Dog is disabled to prevent automatic reboot: Misc → Debug → DisableWatchDog = true.
• Boot Picker (entry selector) is enabled: Misc → Boot → ShowPicker = true.

If there is no obvious error, check the available hacks in Quirks sections one by one. For early boot troubleshooting,
for instance, when OpenCore menu does not appear, using UEFI Shell may help to see early debug messages.

2. How to customise boot entries?

OpenCore follows standard Apple Bless model and extracts the entry name from .contentDetails and
.disk_label.contentDetails files in the booter directory if present. These files contain an ASCII string
with an entry title, which may then be customised by the user.

3. How to choose the default boot entry?

OpenCore uses the primary UEFI boot option to select the default entry. This choice can be altered from UEFI
Setup, with the macOS Startup Disk preference, or the Windows Boot Camp Control Panel. Since choosing
OpenCore’s BOOTx64.EFI as a primary boot option limits this functionality in addition to several firmwares
deleting incompatible boot options, potentially including those created by macOS, you are strongly encouraged to
use the RequestBootVarRouting quirk, which will preserve your selection made in the operating system within
the OpenCore variable space. Note, that RequestBootVarRouting requires a separate driver for functioning.

4. What is the simplest way to install macOS?

Copy online recovery image (*.dmg and *.chunklist files) to com.apple.recovery.boot directory on a FAT32
partition with OpenCore. Load OpenCore Boot Picker and choose the entry, it will have a (dmg) suffix. Custom
name may be created by providing .contentDetails file.

To download recovery online you may use macrecovery.py tool from MacInfoPkg.

For offline installation refer to How to create a bootable installer for macOS article.

5. Why do online recovery images (*.dmg) fail to load?

This may be caused by missing HFS+ driver, as all presently known recovery volumes have HFS+ filesystem.
Another cause may be buggy firmware allocator, which can be worked around with AvoidHighAlloc UEFI quirk.

6. Can I use this on Apple hardware or virtual machines?

Sure, most relatively modern Mac models including MacPro5,1 and virtual machines are fully supported. Even
though there are little to none specific details relevant to Mac hardware, some ongoing instructions can be found
in acidanthera/bugtracker#377.

7. Why do Find&Replace patches must equal in length?

For machine code (x86 code) it is not possible to do such
:::::::::
differently

:::::
sized

:
replacements due to relative addressing.

For ACPI code this is risky, and is technically equivalent to ACPI table replacement, thus not implemented. More
detailed explanation can be found on AppleLife.ru.

8. How can I migrate from AptioMemoryFix?

Behaviour similar to that of AptioMemoryFix can be obtained by installing FwRuntimeServices driver and
enabling the quirks listed below. Please note, that most of these are not necessary to be enabled. Refer to their
individual descriptions in this document for more details.

• ProvideConsoleGop (UEFI quirk)
• AvoidRuntimeDefrag
• DiscardHibernateMap
• EnableSafeModeSlide
• EnableWriteUnprotector
• ForceExitBootServices
• ProtectCsmRegion
• ProvideCustomSlide

49

https://github.com/acidanthera/OpenCoreShell
https://support.apple.com/HT202796
https://support.apple.com/guide/bootcamp-control-panel/start-up-your-mac-in-windows-or-macos-bcmp29b8ac66/mac
https://github.com/acidanthera/MacInfoPkg/blob/master/macrecovery/macrecovery.py
https://github.com/acidanthera/MacInfoPkg/releases
https://support.apple.com/HT201372
https://github.com/acidanthera/bugtracker/issues/377
https://en.wikipedia.org/w/index.php?title=Relative_addressing
https://applelife.ru/posts/819790

	Booter
	Introduction
	Properties
	MmioWhitelist Properties
	Quirks Properties

	Misc
	Introduction
	Properties
	Boot Properties
	Security Properties

	UEFI
	Introduction
	Properties

	Troubleshooting
	Windows support

