OpenCore

Reference Manual (0.5.8.9)
[2020.05.31]

Copyright ©2018-2020 vit9696

Contents

(1 Introduction|

L1 Generic Termsl o o e

2.3 Configuration Structure] L e

[T Directory Structure].

B.2 Installation and Upgrade|. o

B3 Contributionl

8.4 Coding conventions|. e e e e e e e

4 _ACPIl

4.2 Properties

E3Add Propertics]o

4.4 BleexDelete Properties]o oo

4.5 Patch Properties| o . e

4.6 Quirks Properties|. o e

5_Booter]

D. Properties

b.3 MmioWhitelist Properties| e

[6 DeviceProperties|

6.2 roperties

6.3 ommon

roperties| e e e e

[7.5 Emulate Properties| e

[7.6 Patch Properties| e

7.7 Quirks Properties|. e

8 Misc

Q D

[8.3 Boot Properties|.

3. ebug Properties| L

8.5 Security Properties|o e

8.6 Emntry Properties|

9 NVRAM

9. Properties

110.2 Generic Properties| L e e e

110.4 PlattormNVRAM Properties| e

[10.5 SMBIOS Properties| o e

[11.5 OpenRuntime| o L o e

.6 Properties

16
16
16
16

21
21
21
21
24
24
26

29
29
30
30
34
36
39

41
41
41
43

46
46
47
50
50

1 Introduction

This document provides information on [OpenCore user configuration file format used to setup the correct functioning
of macOS operating system. It is to be read as the official clarification of expected OpenCore behaviour. All deviations,
if found in published OpenCore releases, shall be considered documentation or 1mplementatlon bugs and are requested
to be reported through Acidanthera Bugtracker, 3 —trask s—dee :

This document is structured as a specification, and is not meant to provide a step by step algorithm for configuring
end-user board support package (BSP). Any : s—toolsThe intended audience of the document are

rogrammers and engineers with basic underbtandln of maCOS mternalb and UEFI functioning. For these reasons
this document is available exclusively in English, and all other sources or translations of this document are unofficial

Third-party articles, utilities, books, ete—providingsuch-material-and alike may be more useful for a wider audience
as they could provide guide- hke material. However, they are prone to their authors’ preferences, tastes, this document
misinterpretation, and essential obsolescence. In case you still-use these sources, for example, {)Dortania’s (OpenCore

Desktop Guide| and related material, please ensure fellowing-to follow this document for every made decision and
jﬁégiﬁg&]}ylg/g\lts consequences. Regardless—

Be warned that regardless of the sources used you are required to fully understand every dedicated OpenCore
configuration option and concept prior to reporting any issues in Acidanthera Bugtracker.

1.1 Generic Terms

e plist — Subset of ASCII Property List format written in XML, also know as XML plist format version
1. Uniform Type Identifier (UTI): com.apple.property-list. Plists consist of plist objects, which are
combined to form a hierarchical structure. Due to plist format not being well-defined, all the definitions of this
document may only be applied after plist is considered valid by running plutil -lint. External references:
https://www.apple.com/DTDs/PropertyList-1.0.dtd, man plutil.

o plist type — plist collections (plist array, plist dictionary, plist key) and primitives (plist string,
plist data, plist date, plist boolean, plist integer, plist real).

e plist object — definite realisation of plist type, which may be interpreted as value.
e plist array — array-like collection, conforms to array. Consists of zero or more plist objects.

o plist dictionary — map-like (associative array) collection, conforms to dict. Consists of zero or more plist
keys.

e plist key — contains one plist object going by the name of plist key, conforms to key. Consists of
printable 7-bit ASCII characters.

e plist string — printable 7-bit ASCII string, conforms to string.

e plist data — base64-encoded blob, conforms to data.

e plist date — ISO-8601 date, conforms to date, unsupported.

o plist boolean — logical state object, which is either true (1) or false (0), conforms to true and false.

e plist integer — possibly signed integer number in base 10, conforms to integer. Fits in 64-bit unsigned integer
in two’s complement representation, unless a smaller signed or unsigned integral type is explicitly mentioned in
specific plist object description.

e plist real — floating point number, conforms to real, unsupported.

e plist metadata — value cast to data by the implementation. Permits passing plist string, in which case
the result is represented by a null-terminated sequence of bytes (aka C string), plist integer, in which case
the result is represented by 32-bit little endian sequence of bytes in two’s complement representation, plist
boolean, in which case the value is one byte: 01 for true and 00 for false, and plist data itself. All other
types or larger integers invoke undefined behaviour.

https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/bugtracker
https://dortania.github.io
https://dortania.github.io/OpenCore-Desktop-Guide
https://dortania.github.io/OpenCore-Desktop-Guide
https://dortania.github.io/getting-started
https://github.com/acidanthera/bugtracker

Type Value

plist integer 0 (<integer>0</integer>)
plist boolean False (<false/>)
plist tristate False (<false/>)

2.3 Configuration Structure

0C config is separated into following sections, which are described in separate sections of this document. By default it
is tried to not enable anything and optionally provide kill switches with Enable property for plist dict entries. In
general the configuration is written idiomatically to group similar actions in subsections:

e Add provides support for data addition. Existing data will not be overridden, and needs to be handled separatel

with Delete if necessary.
o BlockDelete provides support for data removaler-ignoranee.
e Patch provides support for data modification.
e Quirks provides support for specific hacks.

Root configuration entries consist of the following:

« [ACPI]

+ [Booter

e [DeviceProperties|
e Kernel

o Misd

o [NVRAM

o [PIatformInfol

o [UEET]

It is possible to perform basic validation of the configuration by using ConfigValidity utility. Please note, that

ConfigValidity must match the used OpenCore release and may not be able to detect all configuration flaws present
in the file.

Note: Currently most properties try to have defined values even if not specified in the configuration for safety reasons.
This behaviour should not be relied upon, and all fields must be properly specified in the configuration.

3 Setup

3.1 Directory Structure

Bootstrap
Bootstrap.efi

1
— Resources

r
| S .

Figure 1. Directory Structure

When directory boot is used the directory structure used should follow the description on [Directory Structure|figure.
Available entries include:

o BOOTx64.efi Initial-booterand Bootstrap.efi
Initial bootstrap loaders, which loads OpenCore.efi unless it was already started as a driver. BOOTx64.efi

is loaded by the firmware by default according to UEFI specification, and Bootstrap.efi can be registered as
a_custom option to let OpenCore coexist with operating systems using BO0Tx64.efi as their own loaders (e.g.
Windows), see BootProtect for more details.

e boot
Duet bootstrap loader, which initialises UEFI environment on legacy BIOS firmwares and loads OpenCore.efi
similarly to other bootstrap loaders. Modern Duet bootstrap loader will default to OpenCore.efi on the same

artition when present.
e ACPI

Directory used for storing supplemental ACPI information for section.
e Drivers
Directory used for storing supplemental UEFI drivers for section.
¢ Kexts
Directory used for storing supplemental kernel information for Kernel section.
e Resources
Directory used for storing media resources, such as audio files for screen reader support. See
section for more details. This directory also contains image files for graphical user interface. See
OpenCanopy section for more details.
e Tools
Directory used for storing supplemental tools.
e OpenCore.efi
Main booter driver responsible for operating system loading.
e vault.plist
Hashes for all files potentially loadable by 0C Config.
e config.plist
0C Config.
e vault.sig
Signature for vault.plist.

* SysReport
Directory containing system reports generated by SysReport option.

e nvram.plist
OpenCore variable import file.

e opencore-YYYY-MM-DD-HHMMSS. txt
OpenCore log file.
Kernel panic log file.

Note: Tt is not guaranteed that paths longer than 0C_STORAGE_SAFE_PATH_MAX (128 characters including
O-termnator) will be accessible within OpenCore.

3.2 Installation and Upgrade

To install OpenCore reflect the [Configuration Structure] described in the previous section on a EFI volume of a GPT
partition. While corresponding sections of this document do provide some information in regards to external resources
like ACPI tables, UEFI drivers, or kernel extensions (kexts), completeness of the matter is out of the scope of this
document. Information about kernel extensions may be found in a separate Kext List document available in OpenCore
repository. Vaulting information is provided in [Security Properties| section of this document.

0C config, just like any property lists can be edited with any stock textual editor (e.g. nano, vim), but specialised
software may provide better experience. On macOS the preferred GUI application is Xcode. For a lightweight
cross-platform and open-source alternative ProperTree editor can be utilised.

For BIOS booting a third-party UEFT environment provider will have to be used. BuetPkg0OpenDuetPkg is one of the
known UEFI environment providers for legacy systems. To run OpenCore on such a legacy system you can install
OpenDuetPkg with a dedicated tool — BootlInstall (bundled with OpenCore). Third-party utilities can be used

to perform this on systems different from macOS.
For upgrade purposes refer to Differences.pdf document, providing the information about the changes affecting

the configuration compared to the previous release, and Changelog.md document, containing the list of modifications
across all published updates.

https://github.com/acidanthera/OpenCorePkg/blob/master/Docs/Kexts.md
https://developer.apple.com/xcode
https://github.com/corpnewt/ProperTree
https://github.com/corpnewt/gibMacOS

3.3 Contribution

OpenCore can be compiled as an ordinary EDK II package. Since UDK development was abandoned by TlanoCore
OpenCore requires the use of EDK II Stable. Currently supported EDK II release ;

the-experienee)is hosted in [acidanthera/audk. The required patches for the package are resent in Patche (ilgggtvovr\x

The only officially supported toolchain is XCODE5. Other toolchains might work, but are neither supported, nor
recommended. Contribution of clean patches is welcome. Please do follow [EDK II C Codestylel

To compile with XCODE5, besides Xcode, one should also install NASM and MTOC. The latest Xcode version is
recommended for use despite the toolchain name. Example command sequence may look as follows:

git clone https://github.com/acidanthera/audk UDK
cd UDK
e e))/ eithub. acidant) /E£4P]
e !) /i thub. acidant) MaeInfoP]
git clone https://github.com/acidanthera/OpenCorePkg
source edksetup.sh
make -C BaseTools
build -a X64 -b RELEASE -t XCODE5 -p OpenCorePkg/OpenCorePkg.dsc

Listing 1: Compilation Commands

For IDE usage Xcode projects are available in the root of the repositories. Another approach could be Sublime Text
with EasyClangComplete| plugin. Add .clang_complete file with similar content to your UDK root:

-I/UefiPackages/MdePkg
-I/UefiPackages/MdePkg/Include
-I/UefiPackages/MdePkg/Include/X64
-I/UefiPackages/MdeModulePkg
-I/UefiPackages/MdeModulePkg/Include
-I/UefiPackages/MdeModulePkg/Include/X64

~1/UefiPackages/OpenCorePkg/Include/Acidanthera
~L/UefiPackages/OpenCorePkg/Include/Generic
~1/UefiPackages/OpenCorePkg/Include/Intel
~1/UefiPackages/OpenCorePkg/Include/Microsoft
~1/UefiPackages/OpenCorePkg/Include/VMvare

-I/UefiPackages/0OvmfPkg/Include
-I/UefiPackages/UefiCpuPkg/Include

-IInclude

-include
/UefiPackages/MdePkg/Include/Uefi.h
-fshort-wchar

-Wall

-Wextra

-Wno-unused-parameter
-Wno-missing-braces
-Wno-missing-field-initializers

https://github.com/tianocore/tianocore.github.io/wiki/EDK-II
https://github.com/tianocore/tianocore.github.io/wiki/UDK
https://github.com/tianocore/tianocore.github.io/wiki/EDK-II#stable-tags
https://github.com/acidanthera/audk
https://github.com/tianocore/tianocore.github.io/wiki/Code-Style-C
https://developer.apple.com/xcode
https://www.nasm.us
https://github.com/acidanthera/ocbuild/tree/master/external
https://www.sublimetext.com
https://niosus.github.io/EasyClangComplete

-Wno-tautological-compare
-Wno-sign-compare
-Wno-varargs
-Wno-unused-const-variable
-DOC_TARGET_NOOPT=1
-DNO_MSABI_VA_FUNCS=1

Listing 2: ECC Configuration

Warning: Tool developers modifying config.plist or any other OpenCore files must ensure that their tool checks
for opencore-version NVRAM variable (see [Debug Properties| section below) and warn the user if the version listed
is unsupported or prerelease. OpenCore configuration may change across the releases and the tool shall ensure that it
carefully follows this document. Failure to do so may result in this tool to be considered as malware and blocked with
all possible means.

3.4

Coding conventions

Just like any other project we have conventions that we follow during the development. All third-party contributors are
highly recommended to read and follow the conventions listed below before submitting their patches. In general it is
also recommended to firstly discuss the issue in |Acidanthera Bugtracker before sending the patch to ensure no double
work and to avoid your patch being rejected.

Organisation. The codebase is st

and-contained in OpenCorePkg ax

which is the primary EDK II package. /

Whenever changes are required in multiple repositories, separate pull requests should be sent to each.
Committing the changes should happen firstly to dependent repositories, secondly to primary repositories to
avoid automatic build errors.

Each unique commit should compile with XCODE5 and preferably with other toolchains. In the majority of the
cases it can be checked by accessing the |CI interfacel. Ensuring that static analysis finds no warnings is preferred.
External pull requests and tagged commits must be validated. That said, commits in master may build but may
not necessarily work.

Internal branches should be named as follows: author-name-date, e.g. vit9696-ballooning-20191026.
Commit messages should be prefixed with the primary module (e.g. library or code module) the changes were
made in. For example, OcGuardLib: Add OC_ALIGNED macro. For non-library changes Docs or Build prefixes
are used.

Design. The codebase is written in a subset of freestanding C11 (C17) supported by most modern toolchains used by
EDK II. Applying common software development practices or requesting clarification is recommended if any particular
case is not discussed below.

Never rely on undefined behaviour and try to avoid implementation defined behaviour unless explicitly covered
below (feel free to create an issue when a relevant case is not present).

Use OcGuardLib to ensure safe integral arithmetics avoiding overflows. Unsigned wraparound should be relied on
with care and reduced to the necessary amount.

Check pointers for correct alignment with OcGuardLib and do not rely on the architecture being able to dereference
unaligned pointers.

Use flexible array members instead of zero-length or one-length arrays where necessary.

Use static assertions (STATIC_ASSERT) for type and value assumptions, and runtime assertions (ASSERT) for
precondition and invariant sanity checking. Do not use runtime assertions to check for errors as they should never
alter control flow and potentially be excluded.

Assume UINT32/INT32 to be int-sized and use %u, %d, and %x to print them.

Assume UINTN/INTN to be of unspecified size, and cast them to UINT64/INT64 for printing with %Lu, %Ld and so
on as normal.

Do not rely on integer promotions for numeric literals. Use explicit casts when the type is implementation-
dependent or suffixes when type size is known. Assume U for UINT32 and ULL for UINT64.

Do ensure unsigned arithmetics especially in bitwise maths, shifts in particular.

sizeof operator should take variables instead of types where possible to be error prone. Use ARRAY_SIZE to
obtain array size in elements. Use L_STR_LEN and L_STR_SIZE macros from OcStringLib to obtain string literal

https://github.com/acidanthera/bugtracker
https://travis-ci.com/acidanthera

sizes to ensure compiler optimisation.

Do not use goto keyword. Prefer early return, break, or continue after failing to pass error checking instead of
nesting conditionals.

Use EFIAPI, force UEFT calling convention, only in protocols, external callbacks between modules, and functions
with variadic arguments.

Provide inline documentation to every added function, at least describing its inputs, outputs, precondition,
postcondition, and giving a brief description.

Do not use RETURN_STATUS. Assume EFI_STATUS to be a matching superset that is to be always used when
BOOLEAN is not enough.

Security violations should halt the system or cause a forced reboot.

Codestyle. The codebase follows EDK II codestyle with few changes and clarifications.

Write inline documentation for the functions and variables only once: in headers, where a header prototype is
available, and inline for static variables and functions.

Use line length of 120 characters or less, preferably 100 characters.

Use spaces after casts, e.g. (VOID *) (UINTN) Variable.

Use SPDX license headers as shown in acidanthera/bugtracker#483.

Debugging—
3.5 Debugging

The codebase incorporates EDK II debugging and few custom features to improve the experience.

Use module prefixes, 2-5 letters followed by a colon (:), for debug messages. For OpenCorePkg use OC:, for
libraries and drivers use their own unique prefixes.

Do not use dots (.) in the end of debug messages and separate EFI_STATUS, printed by %r, with a hyphen (e.g.
OCRAM: Allocation of %u bytes failed - %r\n).

Use DEBUG_CODE_BEGIN () and DEBUG_CODE_END () constructions to guard debug checks that may potentially
reduce the performance of release builds and are otherwise unnecessary.

Use DEBUG macro to print debug messages during normal functioning, and RUNTIME_DEBUG for debugging after
EXIT_BOOT_SERVICES.

Use DEBUG_VERBOSE debug level to leave debug messages for future debugging of the code, which are currently
not necessary. By default DEBUG_VERBOSE messages are ignored even in DEBUG builds.

Use DEBUG_INFO debug level for all non critical messages (including errors) and DEBUG_BULK_INFO for extensive
messages that should not appear in NVRAM log that is heavily limited in size. These messages are ignored in
RELEASE builds.

Use DEBUG_ERROR to print critical human visible messages that may potentially halt the boot process, and
DEBUG_WARN for all other human visible errors, RELEASE builds included.

When trying to find the problematic change it is useful to rely on git-bisect|functionality.

10

https://github.com/tianocore/tianocore.github.io/wiki/Code-Style-C
https://github.com/acidanthera/bugtracker/issues/483
https://git-scm.com/docs/git-bisect

4 ACPI

4.1 Introduction

ACPT (Advanced Configuration and Power Interface) is an open standard to discover and configure computer hardware.
ACPI specification| defines the standard tables (e.g. DSDT, SSDT, FACS, DMAR) and various methods (e.g. _DSM, _PRW) for
implementation. Modern hardware needs little changes to maintain ACPI compatibility, yet some of those are provided
as a part of OpenCore.

To compile and disassemble ACPI tables iASL compiler can be used developed by ACPICAL GUI front-end to iASL
compiler can be downloaded from |Acidanthera/MaciASL.

ACPI changes apply globally (to every operating system) with the following effective order:

» Patch is processed.
* Delete is processed.
* Add is processed.
* Quirks are processed.

Applying the changes globally resolves the problems of incorrect operating system detection, which is not possible
before the operating system boots according to the ACPI specification, operating system chainloading, and harder
ACPI debugging. For this reason it may be required to carefully use _0SI method when writing the changes.

Applying the patches early makes it possible to write so called “proxy” patches, where the original method is patched
in the original table and is implemented in the patched table.

4.2 Properties

1. Add
Type: plist array
Failsafe: Empty
Description: Load selected tables from 0C/ACPI directory.

Designed to be filled with plist dict values, describing each bleek-add entry. See section below.

2. BleckDelete
Type: plist array
Failsafe: Empty
Description: Remove selected tables from ACPI stack.

Designed to be filled with plist dict values, describing each bleek-delete entry. See [Delete Properties|section
below.

3. Patch
Type: plist array
Failsafe: Empty
Description: Perform binary patches in ACPI tables before table addition or removal.

Designed to be filled with plist dictionary values describing each patch entry. See[Patch Properties|section
below.

4. Quirks
Type: plist dict
Description: Apply individual ACPI quirks described in [Quirks Properties| section below.

4.3 Add Properties

1. Comment
Type: plist string
Failsafe: Empty string
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

11

https://uefi.org/specifications
https://github.com/acpica/acpica
https://www.acpica.org
https://github.com/acidanthera/MaciASL/releases

2.

Enabled

Type: plist boolean

Failsafe: false

Description: This ACPI table will not be added unless set to true.

Path

Type: plist string
Failsafe: Empty string
Description: File paths meant to be loaded as ACPI tables. Example values include DSDT . am1, SubDir/SSDT-8.aml,
SSDT-USBX.aml, etc.

ACPI table load order follows the item order in the array. All ACPI tables load from 0C/ACPI directory.

Note: All tables but tables with DSDT table identifier (determined by parsing data not by filename) insert new
tables into ACPI stack. DSDT, unlike the rest, performs replacement of DSDT table.

Bleek-Delete Properties

1. A1l

4.5

Type: plist boolean

Failsafe: false

Description: If set to true, all ACPI tables matching the condition will be dreppeddeleted. Otherwise only
first matched table.

Comment

Type: plist string

Failsafe: Empty string

Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

Enabled

Type: plist boolean

Failsafe: false

Description: This ACPI table will not be removed unless set to true.

OemTableld

Type: plist data, 8 bytes

Failsafe: All zero

Description: Match table OEM ID to be equal to this value unless all zero.

TableLength

Type: plist integer

Failsafe: 0

Description: Match table size to be equal to this value unless 0.

TableSignature

Type: plist data, 4 bytes

Failsafe: All zero

Description: Match table signature to be equal to this value unless all zero.

Note: Make sure not to specify table signature when the sequence needs to be replaced in multiple places.
Especially when performing different kinds of renames.

Patch Properties

. Comment

Type: plist string

Failsafe: Empty string

Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

Count
Type: plist integer

12

e Try to avoid hacky changes like renaming _PRW or _DSM whenever possible.
Several cases, where patching actually does make sense, include:

o Refreshing HPET (or another device) method header to avoid compatibility checks by _0SI on legacy hardware.
_STA method with if ((0SFL () == Zero)) { If (HPTE) ... Return (Zero) content may be forced to
always return OxF by replacing A0 10 93 4F 53 46 4C 00 with A4 OA OF A3 A3 A3 A3 A3.

e To provide custom method implementation with in an SSDT, for instance, to report functional key presses on a
laptop, the original method can be replaced with a dummy name by patching _Q11 with XQ11.

Tianocore AcpiAml.hl source file may help understanding ACPI opcodes.

Note: Patches of different Find and Replace lengths are unsupported as they may corrupt ACPI tables and make
ou system unstable due to area relocation. If you need such changes you may utilities “proxy” patching or NOP the

4.6 Quirks Properties

1. FadtEnableReset
Type: plist boolean
Failsafe: false
Description: Provide reset register and flag in FADT table to enable reboot and shutdown,_

Mainly required on legacy hardware —and few laptops. Can also fix power-button shortcuts. Not recommended

unless required.

2. NormalizeHeaders
Type: plist boolean
Failsafe: false
Description: Cleanup ACPI header fields to workaround macOS ACPI implementation bug causing boot crashes.
Reference: Debugging Apple ACPIPlatform on 10.13| by Alex James aka theracermaster. The issue is fixed in
macOS Mojave (10.14).

3. RebaseRegions
Type: plist boolean
Failsafe: false
Description: Attempt to heuristically relocate ACPI memory regions. Not recommended.

ACPI tables are often generated dynamically by underlying firmware implementation. Among the position-
independent code, ACPI tables may contain physical addresses of MMIO areas used for device configuration,
usually grouped in regions (e.g. OperationRegion). Changing firmware settings or hardware configuration,
upgrading or patching the firmware inevitably leads to changes in dynamically generated ACPI code, which
sometimes lead to the shift of the addresses in aforementioned OperationRegion constructions.

For this reason it is very dangerous to apply any kind of modifications to ACPI tables. The most reasonable
approach is to make as few as possible changes to ACPI and try to not replace any tables, especially DSDT.
When this is not possible, then at least attempt to ensure that custom DSDT is based on the most recent DSDT
or remove writes and reads for the affected areas.

When nothing else helps this option could be tried to avoid stalls at PCI Configuration Begin phase of macOS
booting by attempting to fix the ACPI addresses. It does not do magic, and only works with most common cases.
Do not use unless absolutely required.

4. ResetHwSig
Type: plist boolean
Failsafe: false
Description: Reset FACS table HardwareSignature value to 0.

This works around firmwares that fail to maintain hardware signature across the reboots and cause issues with
waking from hibernation.

5. ResetLogoStatus
Type: plist boolean

14

https://github.com/acidanthera/audk/blob/master/MdePkg/Include/IndustryStandard/AcpiAml.h
https://alextjam.es/debugging-appleacpiplatform/

5 Booter

5.1 Introduction

This section allows to apply different kinds of UEFI modifications on Apple bootloader (boot.efi). The modifications
currently provide various patches and environment alterations for different firmwares. Some of these features were
originally implemented as a part of AptioMemoryFix.efi, which is no longer maintained. See Tips and Tricks section
for migration steps.

If you are using this for the first time on a customised firmware, there is a list of checks to do first. Prior to starting
please ensure that you have:

o Most up-to-date UEFI firmware (check your motherboard vendor website).

e Fast Boot and Hardware Fast Boot disabled in firmware settings if present.

e Above 4G Decoding or similar enabled in firmware settings if present. Note, that on some motherboards (notably
ASUS WS-X299-PRO) this option causes adverse effects, and must be disabled. While no other motherboards
with the same issue are known, consider this option to be first to check if you have erratic boot failures.

e DisableIoMapper quirk enabled, or VT-d disabled in firmware settings if present, or ACPI DMAR table

e No ‘slide’ boot argument present in NVRAM or anywhere else. It is not necessary unless you cannot boot at all
or see No slide values are usable! Use custom slide! message in the log.

o CFG Lock (MSR 0xE2 write protection) disabled in firmware settings if present. Ceensider-Consider patching it
if you have enough skills and no option is available. See notes for more details.

o CSM (Compatibility Support Module) disabled in firmware settings if present. You may need to flash GOP ROM
on NVIDIA 6xx/AMD 2xx or older. Use GopUpdate (see the second post) or AMD UEFI GOP MAKER in case
you are not sure how.

e EHCI/XHCI Hand-off enabled in firmware settings only if boot stalls unless USB devices are disconnected.

e VT-x, Hyper Threading, Execute Disable Bit enabled in firmware settings if present.

o While it may not be required, sometimes you have to disable Thunderbolt support, Intel SGX, and Intel
Platform Trust in firmware settings present.

When debugging sleep issues you may want to (temporarily) disable Power Nap and automatic power off, which appear
to sometimes cause wake to black screen or boot loop issues on older platforms. The particular issues may vary, but in
general you should check ACPI tables first. Here is an example of a bug found in some Z68 motherboards. To turn
Power Nap and the others off run the following commands in Terminal:

sudo pmset autopoweroff 0O
sudo pmset powernap O
sudo pmset standby O

Note: These settings may reset at hardware change and in certain other circumstances. To view their current state use
pmset -g command in Terminal.

5.2 Properties

1. MmioWhitelist
Type: plist array
Description: Designed to be filled with plist dict values, describing addresses critical for particular firmware
functioning when DevirtualiseMmio quirk is in use. See |[MmioWhitelist Properties|section below.

2. Quirks
Type: plist dict
Description: Apply individual booter quirks described in Quirks Properties section below.

5.3 MmioWhitelist Properties

1. Address
Type: plist integer
Failsafe: 0
Description: Exceptional MMIO address, which memory descriptor should be left virtualised (unchanged) by

16

https://github.com/acidanthera/AptioFixPkg
https://github.com/LongSoft/UEFITool/blob/master/UEFIPatch/patches.txt
https://www.win-raid.com/t892f16-AMD-and-Nvidia-GOP-update-No-requests-DIY.html
http://www.insanelymac.com/forum/topic/299614-asus-eah6450-video-bios-uefi-gop-upgrade-and-gop-uefi-binary-in-efi-for-many-ati-cards/page-1#entry2042163
http://www.insanelymac.com/forum/topic/329624-need-cmos-reset-after-sleep-only-after-login/#entry2534645

10. ProtectSecureBoot
Type: plist boolean
Failsafe: false
Description: Protect UEFI Secure Boot variables from being written.

Reports security violation during attempts to write to db, dbx, PK, and KEK variables from the operating system.

Note: This quirk mainly attempts to avoid issues with NVRAM implementations with problematic defragmentation,
such as select Insyde or MacPro5, 1.

11. ProtectUefiServices
Type: plist boolean
Failsafe: false
Description: Protect UEFT services from being overridden by the firmware.

Some modern firmwares including both hardware and virtual machines, like VMware, may update point-
ers to UEFI services during driver loading and related actions. Consequentially this directly breaks other
quirks that affect memory management, like DevirtualiseMmio, PretectCsmRegionProtectMemoryRegions, or
ShrinkMemoryMapRebuildAppleMemoryMap, and may also break other quirks depending on the effects of these.

Note: On VMware the need for this quirk may be diagnosed by “Your Mac OS guest might run unreliably with
more than one virtual core.” message.

12. ProvideCustomSlide
Type: plist boolean
Failsafe: false
Description: Provide custom KASLR slide on low memory.

This option performs memory map analysis of your firmware and checks whether all slides (from 1 to 255) can be
used. As boot.efi generates this value randomly with rdrand or pseudo randomly rdtsc, there is a chance of
boot failure when it chooses a conflicting slide. In case potential conflicts exist, this option forces macOS to use a
pseudo random value among the available ones. This also ensures that slide= argument is never passed to the
operating system for security reasons.

Note: The necessity of this quirk is determined by OCABC: Only N/256 slide values are usable! message
in the debug log. If the message is present, this option is to be enabled.

13. RebuildAppleMemoryMap
Type: plist boolean
Failsafe: false
Description: Generate Memory Map compatible with macOS.

Apple kernel has several limitations in parsing UEFI memory map:

e Memory map size must not exceed 4096 bytes as Apple kernel maps it as a single 4K page. Since some
firmwares have very large memory maps (approximately over 100 entries) Apple kernel will crash at boot.

e Memory attributes table is ignored. Ef iRuntimeServicesCode memory statically gets RX permissions, and
all other memory types get RW permissions. Since some firmware drivers may write to global variables
at runtime, Apple kernel will crash at calling UEFI runtime services, unless driver .data section has
EfiRuntimeServicesData type.

To workaround these limitations this quirk applies memory attributes table permissions to memory map passed
to Apple kernel and optionally attempts to unify contiguous slots of similar types if the resulting memory map
exceeds 4 KB.

Note 1: Since many firmwares come with incorrect memory protection table this quirk often comes in pair with
SyncRuntimePermissions.

Note 2: The necessity of this quirk is determined by early boot failures. This quirk replaces EnableWriteUnprotector
on firmwares supporting memory attributes table (MAT).

14. SetupVirtualMap
Type: plist boolean
Failsafe: false
Description: Setup virtual memory at SetVirtualAddresses.

19

6 DeviceProperties

6.1 Introduction

Device configuration is provided to macOS with a dedicated buffer, called Ef iDevicePathPropertyDatabase. This
buffer is a serialised map of DevicePaths to a map of property names and their values.

Property data can be debugged with gfxutil. To obtain current property data use the following command in macOS:

ioreg -1w0 -p IODeviceTree -n efi -r -x | grep device-properties |
sed 's/.*<//;s/>.x//' > /tmp/device-properties.hex &&
gfxutil /tmp/device-properties.hex /tmp/device-properties.plist &&
cat /tmp/device-properties.plist

6.2 Properties

1. Add
Type: plist dict
Description: Sets device properties from a map (plist dict) of deivce paths to a map (plist dict) of variable
names and their values in plist metadata format. Device paths must be provided in canonic string format (e.g.
PciRoot (0x0) /Pci(0x1,0x0) /Pci(0x0,0x0)). Properties will only be set if not present and not bleekeddeleted.

Note: Currently properties may only be (formerly) added by the original driver, so unless a separate driver was
installed, there is no reason to bleek-delete the variables.

2. BlockDelete
Type: plist dict
Description: Removes device properties from a map (plist dict) of deivce paths to an array (plist array)
of variable names in plist string format.

6.3 Common Properties
Some known properties include:

e device-id
User-specified device identifier used for I/O Kit matching. Has 4 byte data type.
e vendor-id
User-specified vendor identifier used for I/O Kit matching. Has 4 byte data type.
e AAPL,ig-platform-id
Intel GPU framebuffer identifier used for framebuffer selection on Ivy Bridge and newer. Has 4 byte data
type.
e AAPL,snb-platform-id
Intel GPU framebuffer identifier used for framebuffer selection on Sandy Bridge. Has 4 byte data type.
e layout-id
Audio layout used for AppleHDA layout selection. Has 4 byte data type.

21

https://github.com/acidanthera/gfxutil

7.5

7.6

. MaxKernel

Type: plist string
Failsafe: Empty string
Description: Blocks kernel driver on specified macOS version or older.

Note: Refer to[Add MaxKernel description] for matching logic.

. MinKernel

Type: plist string
Failsafe: Empty string
Description: Blocks kernel driver on specified macOS version or newer.

Note: Refer to[Add MaxKernel description] for matching logic.

Emulate Properties

. CpuidiData

Type: plist data, 16 bytes
Failsafe: All zero
Description: Sequence of EAX, EBX, ECX, EDX values to replace CPUID (1) call in XNU kernel.

This property serves for two needs:

¢ Enabling support of an unsupported CPU model.
e Enabling XCPM support for an unsupported CPU variant.

Normally it is only the value of EAX that needs to be taken care of, since it represents the full CPUID. The
remaining bytes are to be left as zeroes. Byte order is Little Endian, so for example, #9-C3 06 03 00 stands for
CPUID 6x6306490x0306C3 (Fvy+BridgeHaswell).

For XCPM support it is recommended to use the following combinations.

o Haswell-E (0x306F20x0306F2) to Haswell (0x0306C3):
CpuidiData: C3 06 03 00 00 00 00 00O 00 00 00 OO 0O OO0 00 00
CpuidiMask: FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00
o Broadwell-E (0x0406F1) to Broadwell (0x0306D4):
CpuidiData: D4 06 03 00 00 00 00 00 OO 00 00 00 00 OO0 OO 00
CpuidiMask: FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00

Further-explanations-ean-befound-at—See-Keep in mind, that the following configurations are unsupported (at
least out of the box):

+ Consumer Ivy Bridge (Spectal-NOTESfor—0x0306A9) as Apple disabled XCPM for Ivy Bridge and recommends
legacy_power management for these CPUs. You will need to manually patch xcpm bootstrap to force
XCPM on these CPUs instead of using this option.

* Low-end CPUs (e.g. Haswell+ los-end—Pentium) as they are not supported properly by macOS. Legacy
hacks for older models can be found in the Special NOTES section of acidanthera/bugtracker#365.

CpuidiMask

Type: plist data, 16 bytes

Failsafe: All zero

Description: Bit mask of active bits in CpuidiData.

When each CpuidiMask bit is set to 0, the original CPU bit is used, otherwise set bits take the value of CpuidiData.

Patch Properties

. Base

Type: plist string

Failsafe: Empty string

Description: Selects symbol-matched base for patch lookup (or immediate replacement) by obtaining the address
of provided symbol name. Can be set to empty string to be ignored.

24

https://github.com/acidanthera/bugtracker/issues/365

13.

Skip
Type: plist integer

Failsafe: 0

Description: Number of found occurrences to be skipped before replacement is done.

Quirks Properties

1. AppleCpuPmCfgLock

Type: plist boolean

Failsafe: false

Description: Disables PKG_CST_CONFIG_CONTROL (0xE2) MSR modification in AppleIntelCPUPowerManage-
ment.kext, commonly causing early kernel panic, when it is locked from writing.

Certain firmwares lock PKG_CST_CONFIG_CONTROL MSR register. To check its state one can use bundled
VerifyMsrE2 tool. Select firmwares have this register locked on some cores only.

As modern firmwares provide CFG Lock setting, which allows configuring PKG_CST_CONFIG_CONTROL MSR register
lock, this option should be avoided whenever possible. For several APTIO firmwares not displaying CFG Lock
setting in the GUI it is possible to access the option directly:

(a) Download UEFITool and IFR-Extractor.

(b) Open your firmware image in UEFITool and find CFG Lock unicode string. If it is not present, your firmware
may not have this option and you should stop.

(c) Extract the Setup.bin PE32 Image Section (the one UEFITool found) through Extract Body menu option.

(d) Run IFR-Extractor on the extracted file (e.g. ./ifrextract Setup.bin Setup.txt).

(e) Find CFG Lock, VarStoreInfo (VarOffset/VarName): in Setup.txt and remember the offset right after
it (e.g. 0x123).

(f) Download and run Modified GRUB Shell compiled by |brainsucker or use a newer version| by |datasonel

(g) Enter setup_var 0x123 0x00 command, where 0x123 should be replaced by your actual offset, and reboot.

WARNING: Variable offsets are unique not only to each motherboard but even to its firmware version. Never
ever try to use an offset without checking.

. AppleXcpmCfgLock

Type: plist boolean

Failsafe: false

Description: Disables PKG_CST_CONFIG_CONTROL (0xE2) MSR modification in XNU kernel, commonly causing
early kernel panic, when it is locked from writing (XCPM power management).

Note: This option should be avoided whenever possible. See AppleCpuPmCfgLlock description for more details.

. AppleXcpmExtraMsrs

Type: plist boolean
Failsafe: false
Description: Disables multiple MSR access critical for select CPUs, which have no native XCPM support.

This is normally used in conjunction with Emulate section on Haswell-E, Broadwell-E, Skytake-—XSkylake-SP, and
similar CPUs. More details on the XCPM patches are outlined in acidanthera/bugtracker#365.

Note: Additional not provided patches will be required for Ivy Bridge or Pentium CPUs. It is recommended to
use AppleIntelCpuPowerManagement.kext for the former.

. AppleXcpmForceBoost

Type: plist boolean
Failsafe: false
Description: Forces maximum performance in XCPM mode.

This patch writes 0xFFOO to MSR_IA32_PERF_CONTROL (0x199), effectively setting maximum multiplier for all the
time.

Note: While this may increase the performance, this patch is strongly discouraged on all systems but those
explicitly dedicated to scientific or media calculations. In general only certain Xeon models benefit from the
patch.

26

https://github.com/LongSoft/UEFITool/releases
https://github.com/LongSoft/Universal-IFR-Extractor/releases
http://brains.by/posts/bootx64.7z
https://geektimes.com/post/258090
https://github.com/datasone/grub-mod-setup_var
https://github.com/datasone
https://github.com/acidanthera/bugtracker/issues/365

5.

10.

11.

12.

13.

CustomSMBIOSGuid

Type: plist boolean

Failsafe: false

Description: Performs GUID patching for UpdateSMBIOSMode Custom mode. Usually relevant for Dell laptops.

DisableIoMapper

Type: plist boolean

Failsafe: false

Description: Disables I0Mapper support in XNU (VT-d), which may conflict with the firmware implementation.

Note: This option is a preferred alternative to drepping-deleting DMAR ACPI table and disabling VT-d in firmware
preferences, which does not break VT-d support in other systems in case they need it.

DisableRtcChecksum

Type: plist boolean

Failsafe: false

Description: Disables primary checksum (0x58-0x59) writing in AppleRTC.

Note 1: This option will not protect other areas from being overwritten, see RTCMemoryFixup kernel extension
if this is desired.

Note 2: This option will not protect areas from being overwritten at firmware stage (e.g. macOS bootloader), see
AppleRtc protocol description if this is desired.

DummyPowerManagement

Type: plist boolean

Failsafe: false

Description: Disables AppleIntelCpuPowerManagement.

Note: This option is a preferred alternative to NullCpuPowerManagement .kext for CPUs without native power
management driver in macOS.

ExternalDiskIcons

Type: plist boolean

Failsafe: false

Description: Apply icon type patches to Apple AHCIPort.kext to force internal disk icons for all AHCI disks.

Note: This option should be avoided whenever possible. Modern firmwares usually have compatible AHCI
controllers.

IncreasePciBarSize

Type: plist boolean

Failsafe: false

Description: Increases 32-bit PCI bar size in IOPCIFamily from 1 to 4 GBs.

Note: This option should be avoided whenever possible. In general the necessity of this option means misconfigured
or broken firmware.

LapicKernelPanic

Type: plist boolean

Failsafe: false

Description: Disables kernel panic on LAPIC interrupts.

PanicNoKextDump

Type: plist boolean

Failsafe: false

Description: Prevent kernel from printing kext dump in the panic log preventing from observing panic details.
Affects 10.13 and above.

PowerTimeoutKernelPanic

Type: plist boolean

Failsafe: false

Description: Disables kernel panic on setPowerState timeout.

27

https://github.com/acidanthera/RTCMemoryFixup

8 Misc

8.1 Introduction

This section contains miscellaneous configuration es

affecting OpenCore operating system loading behaviour as well as other entries Wthh do not go to any other section.

OpenCore tries to follow “bless” model also known as “Apple Boot Policy”. The primary specialty of “bless” model
is_to allow embedding boot options within the file system (and be accessible through a specialised driver) as well
as supporting a broader range of predefined boot paths compared to the removable media list found in the UEFT

Each partition will only be used for booting when it corresponds to “Scan policy”: a set of restrictions to only use
artitions with specific file systems and from specific device types. Scan policy behaviour is discussed in ScanPolic
property description.

Scan process starts with obtaining all the partitions filtered with “Scan policy”. Each partition may produce multiple
primary and alternate options. Primary options describe operating systems installed on this media. Alternate options
describe recovery options for the operating systems on the media. It is possible for alternate options to exist without
primary options and vice versa, Be warned that the options may not necessarily describe the operating systems on
the same partition. Fach primary and alternate option can be an auxiliary option or not, refer to HideAuxiliary for
more details. Algorithm to determine boot options behaves as follows:

1. Obtain all available partition handles filtered by “Scan policy” (and driver availabilit

2. Obtain all available boot options from BootOrder UEFI variable.
3. For each found boot option:
¢ Retrieve device path of the boot option.

e Perform fixups (e.g. NVMe subtype correction) and expansion (e.g. for Boot Camp) of the device path.

¢ Obtain device handle by locating device path of the resulting device path (ignore it on failure).
o Find device handle in the list of partition handles (ignore it if missing).

o For disk device paths (not specifying a bootloader) execute “bless” (may return > 1 entr

» For file device paths check presence on the file system directly.
« Exclude options with blacklisted filenames (refer to BlacklistAppleUpdate option).
* On OpenCore boot partition exclude all OpenCore bootstrap files by header checks.
» Mark device handle as used in the list of partition handles if any.
* Register the resulting entries as primary options and determine their types.
The option will become auxiliary for some types (e.g. Apple HFS recover
4. For cach partition handle:
+ If partition handle is marked as unused execute “bless” primary option list refrieval.
In case BlessOverride list is set, not only standard “bless” paths will be found but also custom ones.
* Exclude options with blacklisted filenames (refer to BlacklistAppleUpdate option).
+ On OpenCore boot partition exclude all OpenCore bootstrap files by header checks.
* Register the resulting entries as primary options and determine their types if found.
The option will become auxiliary for some types (e.g. Apple HFS recover
« If partition already has primary options of “Apple Recovery” type proceed to next handle,
* Lookup alternate entries by “bless” recovery option list retrieval and predefined paths.
* Register the resulting entries as alternate auxiliary options and determine their types if found.
5. Custom entries and tools are added as primary options without any checks with respect to Auxiliary.
6. System entries (e.g. Reset NVRAM) are added as primary auxiliary options.

The display order of the boot options in the picker and the boot process are determined separately from the scannin
algorithm. The display order as follows:

+ Alternate options follow corresponding primary options, i.e. Apple recovery will be following the relevant macOS.
option whenever possible.

+ Options will be listed in file system handle firmware order to maintain an established order across the reboots
regardless of the chosen operating system for loading.

+ Custom entries, tools, and system entries will be added after all other options.

o Auxiliary options will only show upon entering “Advanced Mode” in the picker (usually by pressing “Space”

29

The boot process is as follows:

» Try looking up first valid primary option through BootNext UEFT variable.

* On failure looking up first valid primary option through BootOrder UEFI variable.
» Mark the option as the default option to boot.

» Boot option through the picker or without it depending on the ShowPicker option.

Note 1: This process is meant to work reliably only when RequestBootVarRouting option is enabled or the firmware
does not control UEFI boot options (OpenDuetPkg or custom BDS). Without BootProtect it also is possible that
other operating systems overwrite OpenCore, make sure to enable it if you plan to use them.

Note 2: UEFI variable boot options’ boot arguments will be removed if present as they may contain arguments
compromising the operating system, which is undesired once secure boot is enabled.

Note 3: Some operating systems, namely Windows, will create their boot option and mark it as top most upon first
boot or after NVRAM Reset. When this happens default boot entry choice will update till next manual reconfiguration.

8.2 Properties

1. Boot
Type: plist dict
Description: Apply boot configuration described in section below.

2. BlessOverride
Type: plist array
Description: Add custom scanning paths through bless model.

Designed to be filled with plist string entries containing absolute UEFT paths to customised bootloaders, for
example, \EFI\Microseftdebian\Beot\bootmgfwgrubx64.efi for Mieresoft-Debian bootloader. This allows
unusual boot paths to be automaticlly discovered by the boot picker. Designwise they are equivalent to predefined
blessed path, such as \System\Library\CoreServices\boot.efi or \EFI\Microsoft\Boot\bootmgfw.efi, but
unlike predefined bless paths they have highest priority.

3. Debug
Type: plist dict
Description: Apply debug configuration described in [Debug Properties| section below.

4. Entries
Type: plist array
Description: Add boot entries to boot picker.

Designed to be filled with plist dict values, describing each load entry. See [Entry Properties| section below.

5. Security
Type: plist dict
Description: Apply security configuration described in [Security Properties| section below.

6. Tools
Type: plist array
Description: Add tool entries to boot picker.

Designed to be filled with plist dict values, describing each load entry. See [Entry Properties|section below.

Note: Select tools, for example, UEFI Shell, are very dangerous and MUST NOT appear in production
configurations, especially in vaulted ones and protected with secure boot, as they may be used to easily bypass
secure boot chain.

8.3 Boot Properties

1. ConsoleAttributes
Type: plist integer

30

Failsafe: 0
Description: Sets specific attributes for console.

Text renderer supports colour arguments as a sum of foreground and background colors according to UEFI
specification. The value of black background and black foreground (0) is reserved. List of colour names:

e 0x00 — EFI_BLACK

e 0x01 — EFI_BLUE

e 0x02 — EFI_GREEN

e 0x03 — EFI_CYAN

e 0x04 — EFI_RED

e 0x05 — EFI_MAGENTA

e 0x06 — EFI_BROWN

e 0x07 — EFI_LIGHTGRAY

e 0x08 — EFI_DARKGRAY

e 0x09 — EFI_LIGHTBLUE

e 0xOA — EFI_LIGHTGREEN

e 0xOB — EFI_LIGHTCYAN

e 0x0C — EFI_LIGHTRED

e 0xOD — EFI_LIGHTMAGENTA

e 0xOE — EFI_YELLOW

e 0xOF — EFI_WHITE

e 0x00 — EFI_BACKGROUND_BLACK
e 0x10 — EFI_BACKGROUND_BLUE
e 0x20 — EFI_BACKGROUND_GREEN
e 0x30 — EFI_BACKGROUND_CYAN
e 0x40 — EFI_BACKGROUND_RED

e 0x50 — EFI_BACKGROUND_MAGENTA
e 0x60 — EFI_BACKGROUND_BROWN
e 0x70 — EFI_BACKGROUND_LIGHTGRAY

Note: This option may not work well with System text renderer. Setting a background different from black could
help testing proper GOP functioning.

. HibernateMode

Type: plist string

Failsafe: None

Description: Hibernation detection mode. The following modes are supported:

e None — Avoid hibernation for your own good.
e Auto — Use RTC and NVRAM detection.

e RTC — Use RTC detection.

e NVRAM — Use NVRAM detection.

. HideAuxiliary

Type: plist boolean

Failsafe: false

Description: Hides auxiliary entries from picker menu by default.

An entry is considered auxiliary when at least one of the following applies:

¢ Entry is macOS recovery.

e Entry is macOS Time Machine.

o Entry is explicitly marked as Auxiliary.
o Entry is system (e.g. Clean NVRAM).

To see all entries picker menu needs to be reloaded in extended mode by pressing Spacebar key. Hiding auxiliary
entries may increase boot performance for multidisk systems.

31

8.4 Debug Properties

1. AppleDebug
Type: plist boolean
Failsafe: false
Description: Enable boot.efi debug log saving to OpenCore log.

Note: This option only applies to 10.15.4 and newer.

2. ApplePanic.
Type: plist boolean
Description: Save macOS kernel panic to OpenCore root partition.

The file is saved as panic-YYYY-MM-DD-HHMMSS.txt. It is strongly recommended to have keepsyms=1 boot
argument to see debug symbols in the panic log. In case it was not present kpdescribe.sh utility (bundled with

OpenCore) may be used to partially recover the stacktrace.

Development and debug kernels produce more helpful kernel panics. Consider downloading and installin
KernelDebugKit from developer.apple.com when debugging a problem. To activate a development kernel you

will need to add a kcsuffix=development boot argument. Use uname -a command to ensure that your current
loaded kernel is a development (or a debug) kernel.

In case OpenCore kernel panic saving mechanism was not used, kernel panics may still be found in /Library/Logs/Diagnosti
directory. Starting with macOS Catalina kernel panics are stored in JSON format, so they need to be preprocessed
before passing to kpdescribe. sh:

cat Kernel.panic | grep macOSProcessedStackshotData |
thon -c¢ 'import json,sys;print(json.load(sys.stdin) ["macOSPanicString"])'

3. DisableWatchDog
Type: plist boolean
Failsafe: false
Description: Select firmwares may not succeed in quickly booting the operating system, especially in debug
mode, which results in watch dog timer aborting the process. This option turns off watch dog timer.

4. DisplayDelay
Type: plist integer
Failsafe: 0
Description: Delay in microseconds performed after every printed line visible onscreen (i.e. console).

5. DisplayLevel
Type: plist integer, 64 bit
Failsafe: 0
Description: EDK II debug level bitmask (sum) showed onscreen. Unless Target enables console (onscreen)
printing, onscreen debug output will not be visible. The following levels are supported (discover more in
DebugLib.h)):

¢ 0x00000002
¢ 0x00000040
¢ 0x00400000
¢ 0x80000000

bit 1) — DEBUG_WARN in DEBUG, NOOPT, RELEASE.
bit 6) — DEBUG_INFO in DEBUG, NOOPT.

bit 22) — DEBUG_VERBOSE in custom builds.

bit 31) — DEBUG_ERROR in DEBUG, NOOPT, RELEASE.

A~ N S

6. SysReport

Type: plist boolean

Description: Produce system report on ESP folder.

This option will create a SysReport directory on ESP partition unless it is already present. The directory will
contain ACPI and SMBIOS dumps.

Note: For security reasons SysReport option is not available in RELEASE builds. Use a DEBUG build if you need

34

https://developer.apple.com
https://github.com/acidanthera/audk/blob/master/MdePkg/Include/Library/DebugLib.h

7. Target
Type: plist integer
Failsafe: 0
Description: A bitmask (sum) of enabled logging targets. By default all the logging output is hidden, so this
option is required to be set when debugging is necessary.

The following logging targets are supported:

o 0x01 (bit 0) — Enable logging, otherwise all log is discarded.
o 0x02 (bit 1) — Enable basic console (onscreen) logging.

e 0x04 (bit 2) — Enable logging to Data Hub.

¢ 0x08 (bit 3) — Enable serial port logging.

e 0x10 (bit 4) — Enable UEFI variable logging.

o 0x20 (bit 5) — Enable non-volatile UEFI variable logging.

e 0x40 (bit 6) — Enable logging to file.

Console logging prints less than all the other variants. Depending on the build type (RELEASE, DEBUG, or NOOPT)
different amount of logging may be read (from least to most).

Data Hub log will not log kernel and kext patches. To obtain Data Hub log use the following command in macOS:

ioreg -1w0 -p IODeviceTree | grep boot-log | sort | sed 's/.*<\(.*\)>.*/\1/' | xxd -r -p

UEFT variable log does not include some messages and has no performance data. For safety reasons log size is
limited to 32 kilobytes. Some firmwares may truncate it much earlier or drop completely if they have no memory.
Using non-volatile flag will write the log to NVRAM flash after every printed line. To obtain UEFT variable log
use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-1log |
awk '{gsub(/%0d4%0a%00/,"") ;gsub(/%0d%0a/,"\n")}1"

Warning: Some firmwares are reported to have broken NVRAM garbage collection. This means that they may
not be able to always free space after variable deletion. Do not use non-volatile NVRAM logging without extra
need on such devices.

While OpenCore boot log already contains basic version information with build type and date, this data may also
be found in NVRAM in opencore-version variable even with boot log disabled.

File logging will create a file named opencore-YYYY-MM-DD-HHMMSS. txt at EFI volume root with log contents
(the upper case letter sequence is replaced with date and time from the firmware). Please be warned that some
file system drivers present in firmwares are not reliable, and may corrupt data when writing files through UEFT.
Log is attempted to be written in the safest manner, and thus is very slow. Ensure that DisableWatchDog is set
to true when you use a slow drive.

When interpreting the log, note that the lines are prefixed with a tag describing the relevant location (module

of the log line allowing one to better attribute the line to the functionality. The list of currently used tags is
rovided below.

Drivers and tools:

* BMF — OpenCanopy, bitmap font
* BS Bootstrap

* GSTT — GoptStop

+ HDA — AudioDxe

* KKT — KeyTester

e MMDD — MmapDump

* QCPAVP — PavpProvision

* QCRST __ ResetSystem

+ 0CUI __ OpenCanopy

+ 0C — OpenCore main_

Libraries:

o AAPL — OcDebugLogLib, Apple EfiBoot loggin

35

* QCABC — OcAfterBootCompatLib

* QCAE — OcAppleEventLib

+ OCAK — OcAppleKernellib

e 0CAU — OcAudioLib

» 0CAV — OcApplelmageVerificationLib_
* OCA - OcAcpiLib.

+ OCBP — OcAppleBootPolicyLib

* OCB — OcBootManagementLib_

+ 0CCL —_ OcAppleChunkListLib_

« 0CCPU — OcCpulLib
» 0CC — OcConsoleLib.

e 0CDH — OcDataHubLib

e OCDI — OCA leDiskImageLib

e 0CFSQ — OcFileLib, UnblockFs quirk
* OCES — OcFileLib_

* OCEV —_ OcFirmwareVolumeLib
+ OCHS — OcHashServicesLib

+ 0CIC — OclmageConversionLib
+ OCLI — OclnputLib

* 0CJS — OcApfsLib

* OCKM — OcAppleKeyMapLib.

e 0CL — OcDebugLogLib
+ OCHCD — OcMachoLib

e OCME — OcHeciLib

« DCMM — OcMemoryLib_

» QCPI — OcFileLib, partition info
+ OCRAM OcAppleRamDiskLib_
e OCRTC — OcRtcLib

« 0CSE OcAppleSecureBootLih
+ OCSMB — OcSmbiosLib_

e 0CSMC — OcSmcLib

e 0CST — OcStora eLib
- 0CS _ OcSerializedLib_

e OCTPL — OcTemplateLib
e 0CUC — OcUnicodeCollationLib

e OCUT — OCA leUserInterfaceThemeLib
 0CXML — OcXmlLib

8.5 Security Properties

1. AllowNvramReset
Type: plist boolean
Failsafe: false
Description: Allow CMD+0PT+P+R handling and enable showing NVRAM Reset entry in boot picker.

2. AllowSetDefault
Type: plist boolean
Failsafe: false
Description: Allow CTRL+Enter and CTRL+Index handling to set the default boot option in boot picker.

3. AuthRestart
Type: plist boolean
Failsafe: false
Description: Enable VirtualSMC-compatible authenticated restart.

Authenticated restart is a way to reboot FileVault 2 enabled macOS without entering the password. To perform
authenticated restart one can use a dedicated terminal command: sudo fdesetup authrestart. It is also used
when installing operating system updates.

36

VirtualSMC performs authenticated restart by saving disk encryption key split in NVRAM and RTC, which
despite being removed as soon as OpenCore starts, may be considered a security risk and thus is optional.

. BlacklistAppleUpdate
Type: plist boolean

Description: Ignore boot options trying to update Apple peripheral firmware (e.g. MultiUpdater.efi).

. BootProtect

Type: plist string
Failsafe: None
Description: Attempt to provide bootloader persistence.

Valid values:

e None — do nothing.

e Bootstrap — create or update top-priority \EFI\OC\Bootstrap\Bootstrap.efi boot option (Boot9696)
in UEFI variable storage at bootloader startup. For this option to work RequestBootVarRouting is required
to be enabled.

This option provides integration with third-party operating system installation and upgrade at the times they
overwrite \EFI\BOOT\BOOTx64.efi file. By creating a custom option in Bootstrap mode this file path becomes
no longer used for bootstraping OpenCore.

Note 1: Some firmewares may have broken NVRAM, no boot option support, or various other incompatibilities
of any kind. While unlikely, the use of this option may even cause boot failure. Use at your own risk on boards
known to be compatible.

Note 2: Be warned that NVRAM-reset—will-alse-while NVRAM reset executed from OpenCore should not erase
the boot option created in Bootstrapmede, executing NVRAM reset prior to loading OpenCore will remove it

. ExposeSensitiveData

Type: plist integer

Failsafe: 0x6

Description: Sensitive data exposure bitmask (sum) to operating system.

e 0x01 — Expose printable booter path as an UEFI variable.

e 0x02 — Expose OpenCore version as an UEFI variable.

e 0x04 — Expose OpenCore version in boot picker menu title.
e 0x08 — Expose OEM information as a set of UEFI variables.

Exposed booter path points to OpenCore.efi or its booter depending on the load order. To obtain booter path
use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-path

To use booter path for mounting booter volume use the following command in macOS:

u=$ (nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-path | sed 's/.*GPT,\([7,1*\),.*/\1/'); \
if ["$u" !'= ""]; then sudo diskutil mount $u ; fi

To obtain OpenCore version use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:0opencore-version

To obtain OEM information use the following commands in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:0em-product # SMBIOS Typel ProductName
nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:0em-vendor # SMBIOS Type2 Manufacturer
nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:0em-board # SMBIOS Type2 ProductName

37

7. HaltLevel
Type: plist integer, 64 bit
Failsafe: 0x80000000 (DEBUG_ERROR)
Description: EDK IT debug level bitmask (sum) causing CPU to halt (stop execution) after obtaining a message
of HaltLevel. Possible values match DisplayLevel values.

8. Vault
Type: plist string
Failsafe: Secure
Description: Enables vaulting mechanism in OpenCore.

Valid values:

e Optional — require nothing, no vault is enforced, insecure.

e Basic — require vault.plist file present in OC directory. This provides basic filesystem integrity verification
and may protect from unintentional filesystem corruption.

e Secure — require vault.sig signature file for vault.plist in OC directory. This includes Basic integrity
checking but also attempts to build a trusted bootchain.

vault.plist file should contain SHA-256 hashes for all files used by OpenCore. Presence of this file is highly
recommended to ensure that unintentional file modifications (including filesystem corruption) do not happen
unnoticed. To create this file automatically use |create_vault.sh script. Regardless of the underlying filesystem,
path name and case must match between config.plist and vault.plist.

vault.sig file should contain a raw 256 byte RSA-2048 signature from SHA-256 hash of vault.plist. The
signature is verified against the public key embedded into OpenCore.efi. To embed the public key you should
do either of the following:

e Provide public key during the OpenCore.efi compilation in OpenCoreVault. c|file.
o Binary patch OpenCore.efi replacing zeroes with the public key between =BEGIN 0C VAULT= and ==END
0C VAULT== ASCII markers.

RSA public key 520 byte format description can be found in Chromium OS documentation. To convert public
key from X.509 certificate or from PEM file use RsaTool.

The complete set of commands to:

e Create vault.plist.

o Create a new RSA key (always do this to avoid loading old configuration).
¢ Embed RSA key into OpenCore.efi.

o Create vault.sig.

Can look as follows:

cd /Volumes/EFI/EFI/0C

/path/to/create_vault.sh .

/path/to/RsaTool -sign vault.plist vault.sig vault.pub

off=$(($(strings -a -t d OpenCore.efi | grep "=BEGIN OC VAULT=" | cut -f1 -d' ')+16))
dd of=OpenCore.efi if=vault.pub bs=1 seek=$0ff count=528 conv=notrunc

rm vault.pub

Note 1: While it may appear obvious, but you have to use an external method to verify OpenCore.efi and
BOOTx64.efi for secure boot path. For this you are recommended to at least enable UEFI SecureBoot with a
custom certificate, and sign OpenCore.efi and BOOTx64.efi with your custom key. More details on customising
secure boot on modern firmwares can be found in [Taming UEFI SecureBoot paper (in Russian).

Note 2: vault.plist and vault.sig are used regardless of this option when vault.plist is present or public
key is embedded into OpenCore.efi. Setting this option will only ensure configuration sanity, and abort the boot
process otherwise.

9. ScanPolicy
Type: plist integer, 32 bit
Failsafe: 0xF01030x10F0103
Description: Define operating system detection policy.

38

https://github.com/acidanthera/OpenCorePkg/tree/master/Utilities/CreateVault
https://github.com/acidanthera/OpenCorePkg/blob/master/Platform/OpenCore/OpenCoreVault.c
https://github.com/acidanthera/OpenCorePkg/tree/master/Utilities/CreateVault
https://habr.com/post/273497/

This value allows to prevent scanning (and booting) from untrusted source based on a bitmask (sum) of select
flags. As it is not possible to reliably detect every file system or device type, this feature cannot be fully relied
upon in open environments, and the additional measures are to be applied.

Third party drivers may introduce additional security (and performance) measures following the provided scan
policy. Scan policy is exposed in scan-policy variable of 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102 GUID for
UEFI Boot Services only.

0x00000001 (bit 0) — OC_SCAN_FILE_SYSTEM_LOCK, restricts scanning to only known file systems defined as
a part of this policy. File system drivers may not be aware of this policy, and to avoid mounting of undesired
file systems it is best not to load its driver. This bit does not affect dmg mounting, which may have any file
system. Known file systems are prefixed with 0C_SCAN_ALLOW_FS_.

0x00000002 (bit 1) — OC_SCAN_DEVICE_LOCK, restricts scanning to only known device types defined as a
part of this policy. This is not always possible to detect protocol tunneling, so be aware that on some
systems it may be possible for e.g. USB HDDs to be recognised as SATA. Cases like this must be reported.
Known device types are prefixed with 0C_SCAN_ALLOW_DEVICE_.

0x00000100 (bit 8) — OC_SCAN_ALLOW_FS_APFS, allows scanning of APFS file system.

¢ 0x00000200 (bit 9) — OC_SCAN_ALLOW_FS_HFS, allows scanning of HF'S file system.

e 0x00000400 (bit 10) — 0C_SCAN_ALLOW_FS_ESP, allows scanning of EFI System Partition file system.
e 0x00000800 (bit 11) — OC_SCAN_ALLOW_FS_NTFS, allows scanning of NTFS (Msft Basic Data) file system.
e 0x00001000 (bit 12) — OC_SCAN_ALLOW_FS_EXT, allows scanning of EXT (Linux Root) file system.

e 0x00010000 (bit 16) — 0C_SCAN_ALLOW_DEVICE_SATA, allow scanning SATA devices.

e 0x00020000 (bit 17) — 0C_SCAN_ALLOW_DEVICE_SASEX, allow scanning SAS and Mac NVMe devices.
e 0x00040000 (bit 18) — 0C_SCAN_ALLOW_DEVICE_SCSI, allow scanning SCSI devices.

e 0x00080000 (bit 19) — 0C_SCAN_ALLOW_DEVICE_NVME, allow scanning NVMe devices.

e 0x00100000 (bit 20) — 0C_SCAN_ALLOW_DEVICE_ATAPI, allow scanning CD/DVD devices.

e 0x00200000 (bit 21) — 0C_SCAN_ALLOW_DEVICE_USB, allow scanning USB devices.

¢ 0x00400000 (bit 22) — O0C_SCAN_ALLOW_DEVICE_FIREWIRE, allow scanning FireWire devices.

¢ 0x00800000 (bit 23) — 0C_SCAN_ALLOW_DEVICE_SDCARD, allow scanning card reader devices.

0x01000000 (bit 24) — 0C_SCAN ALLOW DEVICE PCI, allow scanning devices directly connected to PCI bus
e.g. VIRTIO).

Note: Given the above description, 0xF0103 value is expected to allow scanning of SATA, SAS, SCSI, and NVMe
devices with APFS file system, and prevent scanning of any devices with HF'S or FAT32 file systems in addition
to not scanning APFS file systems on USB, CD, and FireWire drives. The combination reads as:

0C_SCAN_FILE_SYSTEM_LOCK
0C_SCAN_DEVICE_LOCK
0C_SCAN_ALLOW_FS_APFS
0C_SCAN_ALLOW_DEVICE_SATA
0C_SCAN_ALLOW_DEVICE_ SASEX
0C_SCAN_ALLOW_DEVICE_SCSI
0C_SCAN_ALLOW_DEVICE_NVME

8.6 Entry Properties

1.

Arguments
Type: plist string
Failsafe: Empty string

Description: Arbitrary ASCII string used as boot arguments (load options) of the specified entry.

Auxiliary
Type: plist boolean
Failsafe: false

Description: This entry will not be listed by default when HideAuxiliary is set to true.

Comment
Type: plist string
Failsafe: Empty string

Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

39

9 NVRAM

9.1 Introduction

Has plist dict type and allows to set volatile UEFI variables commonly referred as NVRAM variables. Refer
to man nvram for more details. macOS extensively uses NVRAM variables for OS — Bootloader — Firmware
intercommunication, and thus supplying several NVRAM is required for proper macOS functioning.

Each NVRAM variable consists of its name, value, attributes (refer to UEFI specification), and its GUID) representing
which ‘section’ NVRAM variable belongs to. macOS uses several GUIDs, including but not limited to:

+ 4D1EDE05-38C7-4A6A-9CC6-4BCCAS8B38C14 (APPLE_VENDOR_VARIABLE_GUID)
« 7C436110-AB2A-4BBB-A880-FE41995C9F82 (APPLE_BOOT_VARIABLE_GUID)

+ 8BE4DF61-93CA-11D2-AAOD-00E098032B8C (EFI_GLOBAL_VARIABLE_GUID)

+ 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102 (OC_VENDOR_VARIABLE_GUID)

Note: Some of the variables may be added by [PlatformNVRAM] or [Generid subsections of section. Please
ensure that variables of this section never collide with them, as behaviour is undefined otherwise.

For proper macOS functioning it is often required to use OC_FIRMWARE_RUNTIME protocol implementation currently
offered as a part of OpenRuntime driver. While it brings any benefits, there are certain limitations which arise depending
on the use.

1. Not all tools may be aware of protected namespaces.
When RequestBootVarRouting is used Boot-prefixed variable access is restricted and protected in a separate
namespace. To access the original variables tools have to be aware of 0C_FIRMWARE_RUNTIME logic.

9.2 Properties

1. Add
Type: plist dict
Description: Sets NVRAM variables from a map (plist dict) of GUIDs to a map (plist dict) of variable
names and their values in plist metadata format. GUIDs must be provided in canonic string format in upper
or lower case (e.g. 8BE4DF61-93CA-11D2-AA0D-00E098032B8C).

Created variables get EFI_VARIABLE_BOOTSERVICE_ACCESS and EFI_VARIABLE_RUNTIME_ACCESS attributes set.
Variables will only be set if not present or bleekeddeleted. I.e. to overwrite an existing variable value add the
variable name to the BtoekDelete section. This approach enables to provide default values till the operating
system takes the lead.

Note: If plist key does not conform to GUID format, behaviour is undefined.

2. BloekDelete
Type: plist dict
Description: Removes NVRAM variables from a map (plist dict) of GUIDs to an array (plist array) of
variable names in plist string format.

3. LegacyEnable
Type: plist boolean
Failsafe: false
Description: Enables loading of NVRAM variable file named nvram.plist from EFI volume root.

This file must have root plist dictionary type and contain two fields:

e Version — plist integer, file version, must be set to 1.
e Add — plist dictionary, equivalent to Add from config.plist.

Variable loading happens prior to BteekDelete (and Add) phases. Unless LegacyOverwrite is enabled, it will
not overwrite any existing variable. Variables allowed to be set must be specified in LegacySchema. Third-party
scripts may be used to create nvram.plist file. An example of such script can be found in Utilities. The use of

41

https://en.wikipedia.org/wiki/Universally_unique_identifier

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeaturesMask
Combined FirmwareFeaturesMask and ExtendedFirmwareFeaturesMask. Present on newer Macs to avoid
extra parsing of SMBIOS tables.

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_BID
Hardware BoardProduct (e.g. Mac-35C1E88140C3E6CF). Not present on real Macs, but used to avoid extra
parsing of SMBIOS tables, especially in boot.efi.

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_MLB
Hardware BoardSerialNumber. Override for MLB. Present on newer Macs (2013+ at least).

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_ROM
Hardware ROM. Override for ROM. Present on newer Macs (2013+ at least).

e 7C436110-AB2A-4BBB-A880-FE41995C9F82:prev-lang:kbd
ASCII string defining default keyboard layout. Format is 1ang-COUNTRY : keyboard, e.g. ru-RU:252 for Russian
locale and ABC keyboard. Also accepts short forms: ru:252 or ru:0 (U.S. keyboard, compatible with 10.9). Full
decoded keyboard list from AppleKeyboardLayouts-L.dat can be found here. Using non-latin keyboard on 10.14
will not enable ABC keyboard, unlike previous and subsequent macOS versions, and is thus not recommended in
case you need 10.14.

e 7C436110-AB2A-4BBB-A880-FE41995C9F82:security—mode
ASCII string defining FireWire security mode. Legacy, can be found in IOFireWireFamily source code in
[IOFireWireController.cppl It is recommended not to set this variable, which may speedup system startup. Setting
to full is equivalent to not setting the variable and none disables FireWire security.

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:UIScale
One-byte data defining boot.efi user interface scaling. Should be 01 for normal screens and 02 for HiDPI
screens.

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:DefaultBackgroundColor
Four-byte RGBABGRA data defining boot.efi user interface background colour. Standard colours include BF BF
BF 00 (Light Gray) and 00 00 00 00 (Syrah Black). Other colours may be set at user’s preference.

9.5 Other Variables
The following variables may be useful for certain configurations or troubleshooting:

e 7C436110-AB2A-4BBB-A880-FE41995C9F82:boot-args
Kernel arguments, used to pass configuration to Apple kernel and drivers. There are many arguments, which
may be found by looking for the use of PE_parse_boot_argn function in the kernel or driver code. Some of the
known boot arguments include:
— acpi_layer=0xFFFFFFFF
— acpi_level=0xFFFF5F (implies ACPI_ALL_COMPONENTS)
— batman=VALUE (AppleSmartBatteryManager debug mask)
— batman-nosmc=1 (disable AppleSmartBatteryManager SMC interface)
— cpus=VALUE (maximum number of CPUs used)
— debug=VALUE (debug mask)
— 10=VALUE (I0Kit debug mask)
— keepsyms=1 (show panic log debug symbols)
— kextlog=VALUE (kernel extension loading debug mask)
— nv_disable=1 (disables NVIDIA GPU acceleration)
— nvda_drv=1 (legacy way to enable NVIDIA web driver, removed in 10.12)
— npci=0x2000 (legacy, disables kIOPCIConfiguratorPFM64)
— lapic_dont_panic=1
— slide=VALUE (manually set KASLR slide)
— smcdebug=VALUE (AppleSMC debug mask)
— -amd_no_dgpu_accel (alternative to WhateverGreen’s -radvesa for new GPUs)
— -nehalem_error_disable
— -no_compat_check (disable model checking)
— -s (single mode)
— -v (verbose mode)
— -x (safe mode)
There are multiple external places summarising macOS argument lists: example 1], lexample 2.
e 7C436110-AB2A-4BBB-A880-FE41995C9F82:bootercfg

43

https://github.com/acidanthera/OpenCorePkg/tree/master/Utilities/AppleKeyboardLayouts
https://opensource.apple.com/source/IOFireWireFamily/IOFireWireFamily-473/IOFireWireFamily.kmodproj/IOFireWireController.cpp.auto.html
https://github.com/acpica/acpica/blob/master/source/include/acoutput.h
https://www.insanelymac.com/forum/topic/260539-1068-officially-released/?do=findComment&comment=1707972
https://github.com/acidanthera/WhateverGreen
https://osxeon.wordpress.com/2015/08/10/boot-argument-options-in-os-x
https://superuser.com/questions/255176/is-there-a-list-of-available-boot-args-for-darwin-os-x

Booter arguments, similar to boot-args but for boot.efi. Accepts a set of arguments, which are hexadecimal
64-bit values with or without 0x. At different stages boot.efi will request different debugging (logging) modes
(e.g. after ExitBootServices it will only print to serial). Several booter arguments control whether these requests
will succeed. The list of known requests is covered below:

— 0x00 — INIT.
— 0x01 — VERBOSE (e.g. -v, force console logging).
— 0x02 — EXIT.

— 0x03 — RESET: OK.

— 0x04 — RESET:FAIL (e.g. unknown board-id, hibernate mismatch, panic loop, etc.).

— 0x05 — RESET:RECOVERY.

— 0x06 — RECOVERY.

— 0x07 — REAN:START.

— 0x08 — REAN:END.

— 0x09 — DT (can no longer log to DeviceTree).

— 0x0A — EXITBS:START (forced serial only).

— 0x0B — EXITBS:END (forced serial only).

— 0x0C — UNKNOWN.
In 10.15 debugging support was mostly broken before 10.15.4 due to some kind of refactoring and introduction
of a new debug protocol. Some of the arguments and their values below may not be valid for versions prior to
10.15.4. The list of known arguments is covered below:

— boot-save-log=VALUE — debug log save mode for normal boot.

* 0

* 1

% 2 — (default).

* 3

*x 4 — (save to file).

— wake-save-log=VALUE — debug log save mode for hibernation wake.
0 — disabled.
1
2 — (default).
3 — (unavailable).
* 4 — (save to file, unavailable).
— breakpoint=VALUE — enables debug breaks (missing in production boot.efi).
% 0 — disables debug breaks on errors (default).
* 1 — enables debug breaks on errors.
— console=VALUE — enables console logging.
* 0 — disables console logging.
* 1 — enables console logging when debug protocol is missing (default).
* 2 — enables console logging unconditionally (unavailable).
— embed-log-dt=VALUE — enables DeviceTree logging.
x 0 — disables DeviceTree logging (default).
* 1 — enables DeviceTree logging.
— kc-read-size=VALUE — Chunk size used for buffered I/O from network or disk for prelinkedkernel reading
and related. Set to 1IMB (0x100000) by default, can be tuned for faster booting.
— log-level=VALUE — log level bitmask.
* 0x01 — enables trace logging (default).
— serial=VALUE — enables serial logging.
*x 0 — disables serial logging (default).
x 1 — enables serial logging for EXITBS: END onwards.
* 1 — enables serial logging for EXITBS:START onwards.
* 3 — enables serial logging when debug protocol is missing.
* 4 — enables serial logging unconditionally.
— timestamps=VALUE — enables timestamp logging.
* 0 — disables timestamp logging.
* 1 — enables timestamp logging (default).
— log=VALUE — deprecated starting from 10.15.
*x 1 — AppleLoggingConOutOrErrSet /AppleLoggingConOutOrErrPrint (classical ConOut/StdErr)

* X ¥ %

44

https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/Protocol/AppleDebugLog.h

10 PlatformInfo

Platform information is comprised of several identification fields generated or filled manually to be compatible with
macOS services. The base part of the configuration may be obtained from packageAppleModels, which itself generates
a set of interfaces based on a database in [YAML format. These fields are written to three select destinations:

« SMBIOS
e Data Hub
« NVRAM

Most of the fields specify the overrides in SMBIOS, and their field names conform to EDK2 SmBios.h| header file.
However, several important fields reside in Data Hub and NVRAM. Some of the values can be found in more than one
field and/or destination, so there are two ways to control their update process: manual, where one specifies all the
values (the default), and semi-automatic, where (Automatic) only select values are specified, and later used for system
configuration.

To inspect SMBIOS contents dmidecode utility can be used. Version with macOS specific enhancements can be
downloaded from |Acidanthera/dmidecodel

10.1 Properties

1. Automatic
Type: plist boolean
Failsafe: false
Description: Generate PlatformInfo based on Generic section instead of using values from DataHub, NVRAM,
and SMBIOS sections.

Enabling this option is useful when Generic section is flexible enough—;_

e When enabled SMBIOS, DataHub, and PlatformNVRAM data is unused.
+ When disabled Generic section is unused.

2. UpdateDataHub
Type: plist boolean
Failsafe: false
Description: Update Data Hub fields. These fields are read from Generic or DataHub sections depending on
Automatic value.

3. UpdateNVRAM
Type: plist boolean
Failsafe: false
Description: Update NVRAM fields related to platform information.

These fields are read from Generic or PlatformNVRAM sections depending on Automatic value. All the other
fields are to be specified with NVRAM section.

If UpdateNVRAM is set to false the aforementioned variables can be updated with [NVRAM section. If UpdateNVRAM
is set to true the behaviour is undefined when any of the fields are present in NVRAM section.

4. UpdateSMBIOS
Type: plist boolean
Failsafe: false
Description: Update SMBIOS fields. These fields are read from Generic or SMBIOS sections depending on
Automatic value.

5. UpdateSMBIOSMode
Type: plist string
Failsafe: Create
Description: Update SMBIOS fields approach:

e TryOverwrite — Overwrite if new size is <= than the page-aligned original and there are no issues with
legacy region unlock. Create otherwise. Has issues with some firmwares.

e Create — Replace the tables with newly allocated EfiReservedMemoryType at AllocateMaxAddress without
any fallbacks.

46

https://github.com/acidanthera/OpenCorePkg/blob/master/AppleModels
https://yaml.org/spec/1.2/spec.html
https://www.dmtf.org/standards/smbios
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Intel/Protocol/DataHub.h
https://github.com/acidanthera/audk/blob/master/MdePkg/Include/IndustryStandard/SmBios.h
http://www.nongnu.org/dmidecode
https://github.com/acidanthera/dmidecode/releases

e Overwrite — Overwrite existing gEfiSmbiosTableGuid and gEfiSmbiosTable3Guid data if it fits new size.
Abort with unspecified state otherwise.

o Custom — Write SMBIOS tables (gEfiSmbios (3) TableGuid) to gOcCustomSmbios (3) TableGuid to workaround
firmwares overwriting SMBIOS contents at ExitBootServices. Otherwise equivalent to Create. Requires
patching AppleSmbios.kext and AppleACPIPlatform.kext to read from another GUID: "EB9D2D31" -
"EB9D2D35" (in ASCII), done automatically by CustomSMBIOSGuid quirk.

Note: A side effect of using Custom approach is making SMBIOS updates exclusive to macOS, avoiding a collission
with existing Windows activation and custom OEM software but potentially breaking Apple-specific tools.

6. Generic
Type: plist dictonary
Optional: When Automatic is false
Description: Update all fields. This section is read only when Automatic is active.

7. DataHub
Type: plist dictonary
Optional: When Automatic is true
Description: Update Data Hub fields. This section is read only when Automatic is not active.

8. PlatformNVRAM
Type: plist dictonary
Optional: When Automatic is true
Description: Update platform NVRAM fields. This section is read only when Automatic is not active.

9. SMBIOS
Type: plist dictonary
Optional: When Automatic is true
Description: Update SMBIOS fields. This section is read only when Automatic is not active.

10.2 Generic Properties

1. SpoofVendor
Type: plist boolean
Failsafe: false
Description: Sets SMBIOS vendor fields to Acidanthera.

It is dangerous to use Apple in SMBIOS vendor fields for reasons given in SystemManufacturer description.
However, certain firmwares may not provide valid values otherwise, which could break some software.

2. AdviseWindows
Type: plist boolean
Failsafe: false
Description: Forces Windows support in FirmwareFeatures.

Added bits to FirmwareFeatures:

o FW_FEATURE_SUPPORTS_CSM_LEGACY_MODE (0x1) - Without this bit it is not possible to reboot to Windows
installed on a drive with EFT partition being not the first partition on the disk.

o FW_FEATURE_SUPPORTS_UEFI_WINDOWS_BOOT (0x20000000) - Without this bit it is not possible to reboot to
Windows installed on a drive with EFI partition being the first partition on the disk.

3. SystemProductName
Type: plist string
Failsafe: MacPro6,1
Description: Refer to SMBIOS SystemProductName.

4. SystemSerialNumber
Type: plist string
Failsafe: OPENCORE_SN1
Description: Refer to SMBIOS SystemSerialNumber.

47

10.4 PlatformNVRAM Properties

1.

BID

Type: plist string

Failsafe: Not installed

Description: Specifies the value of NVRAM variable 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14 :HW_BID.

ROM

Type: plist data, 6 bytes

Failsafe: Not installed

Description: Specifies the values of NVRAM variables 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14 :HW_ROM and
4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14 :ROM.

MLB

Type: plist string

Failsafe: Not installed

Description: Specifies the values of NVRAM variables 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14 :HW_MLB and
4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14 : MLB.

. FirmwareFeatures

Type: plist data, 8 bytes
Failsafe: Not installed
Description: This variable comes in pair with FirmwareFeaturesMask. Specifies the values of NVRAM variables:

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeatures
e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeatures

FirmwareFeaturesMask

Type: plist data, 8 bytes

Failsafe: Not installed

Description: This variable comes in pair with FirmwareFeatures. Specifies the values of NVRAM variables:

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeaturesMask
e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeaturesMask

10.5 SMBIOS Properties

1.

BIOSVendor

Type: plist string

Failsafe: OEM specified

SMBIOS: BIOS Information (Type 0) — Vendor

Description: BIOS Vendor. All rules of SystemManufacturer do apply.

BIOSVersion

Type: plist string

Failsafe: OEM specified

SMBIOS: BIOS Information (Type 0) — BIOS Version

Description: Firmware version. This value gets updated and takes part in update delivery configuration and
macOS version compatibility. This value could look like MM71.88Z.0234.B00.1809171422 in older firmwares,
and is described in BiosId.h. In newer firmwares it should look like 236.0.0.0.0 or 220.230.16.0.0 (iBridge:
16.16.2542.0.0,0). iBridge version is read from BridgeOSVersion variable, and is only present on macs with
T2.

Apple ROM Version

BIOS ID: MBP151.88Z.F000.B00.1811142212
Model: MBP151

EFI Version: 220.230.16.0.0

Built by: root@quinoa

Date: Wed Nov 14 22:12:53 2018
Revision: 220.230.16 (B&I)

ROM Version: FOO0O_BOO
Build Type: Official Build, RELEASE

50

https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/Guid/BiosId.h

10.

Compiler: Apple LLVM version 10.0.0 (clang-1000.2.42)

UUID: E5D1475B-29FF-32BA-8552-682622BA42E1
UUID: 151B0907-10F9-3271-87CD-4BF5DBECACF5
BIOSReleaseDate

Type: plist string

Failsafe: OEM specified

SMBIOS: BIOS Information (Type 0) — BIOS Release Date

Description: Firmware release date. Similar to BIOSVersion. May look like 12/08/2017.

SystemManufacturer

Type: plist string

Failsafe: OEM specified

SMBIOS: System Information (Type 1) — Manufacturer

Description: OEM manufacturer of the particular board. Shall not be specified unless strictly required. Should
not contain Apple Inc., as this confuses numerous services present in the operating system, such as firmware
updates, eficheck, as well as kernel extensions developed in Acidanthera, such as Lilu and its plugins. In addition
it will also make some operating systems like Linux unbootable.

SystemProductName

Type: plist string

Failsafe: OEM specified

SMBIOS: System Information (Type 1), Product Name

Description: Preferred Mac model used to mark the device as supported by the operating system. This value
must be specified by any configuration for later automatic generation of the related values in this and other
SMBIOS tables and related configuration parameters. If SystemProductName is not compatible with the target
operating system, -no_compat_check boot argument may be used as an override.

Note: If SystemProductName is unknown, and related fields are unspecified, default values should be assumed as
being set to MacPro6,1 data. The list of known products can be found in MaetrnfePkgAppleModels.

SystemVersion

Type: plist string

Failsafe: OEM specified

SMBIOS: System Information (Type 1) — Version

Description: Product iteration version number. May look like 1.1.

SystemSerialNumber

Type: plist string

Failsafe: OEM specified

SMBIOS: System Information (Type 1) — Serial Number

Description: Product serial number in defined format. Known formats are described in macserial.

SystemUUID

Type: plist string, GUID

Failsafe: OEM specified

SMBIOS: System Information (Type 1) — UUID

Description: A UUID is an identifier that is designed to be unique across both time and space. It requires no
central registration process.

SystemSKUNumber

Type: plist string

Failsafe: OEM specified

SMBIOS: System Information (Type 1) — SKU Number

Description: Mac Board ID (board-id). May look like Mac-7BASB2D9E42DDD94 or Mac-F221BEC8 in older
models. Sometimes it can be just empty.

SystemFamily

Type: plist string

Failsafe: OEM specified

SMBIOS: System Information (Type 1) — Family
Description: Family name. May look like iMac Pro.

o1

https://github.com/acidanthera/OpenCorePkg/blob/master/Utilities/macserial/FORMAT.md

21.

22.

23.

24.

25.

26.

27.

28.

ChassisSerialNumber

Type: plist string

Failsafe: OEM specified

SMBIOS: System Enclosure or Chassis (Type 3) — Version
Description: Should match SystemSerialNumber.

ChassisAssetTag

Type: plist string

Failsafe: OEM specified

SMBIOS: System Enclosure or Chassis (Type 3) — Asset Tag Number
Description: Chassis type name. Varies, could be empty or MacBook-Aluminum.

PlatformFeature

Type: plist integer, 32-bit

Failsafe: OxFFFFFFFF

SMBIOS: APPLE_SMBIOS_TABLE_TYPE133 - PlatformFeature

Description: Platform features bitmask. Refer to |AppleFeatures.h for more details. Use OxFFFFFFFF value to
not provide this table.

SmcVersion

Type: plist data, 16 bytes

Failsafe: All zero

SMBIOS: APPLE_SMBIOS_TABLE_TYPE134 - Version

Description: ASCII string containing SMC version in upper case. Missing on T2 based Macs. Ignored when
ZETO.

FirmwareFeatures

Type: plist data, 8 bytes

Failsafe: 0

SMBIOS: APPLE_SMBIOS_TABLE_TYPE128 - FirmwareFeatures and ExtendedFirmwareFeatures
Description: 64-bit firmware features bitmask. Refer to |AppleFeatures.h for more details. Lower 32 bits match
FirmwareFeatures. Upper 64 bits match ExtendedFirmwareFeatures.

FirmwareFeaturesMask

Type: plist data, 8 bytes

Failsafe: 0

SMBIOS: APPLE_SMBIOS_TABLE_TYPE128 - FirmwareFeaturesMask and ExtendedFirmwareFeaturesMask
Description: Supported bits of extended firmware features bitmask. Refer to AppleFeatures.h| for more details.
Lower 32 bits match FirmwareFeaturesMask. Upper 64 bits match ExtendedFirmwareFeaturesMask.

ProcessorType

Type: plist integer, 16-bit

Failsafe: Automatic

SMBIOS: APPLE_SMBIOS_TABLE_TYPE131 - ProcessorType
Description: Combined of Processor Major and Minor types.

MemoryFormFactor

Type: plist integer, 8-bit

Failsafe: OEM specified

SMBIOS: Memory Device (Type 17) — Form Factor

Description: Memory form factor. On Macs it should be DIMM or SODIMM.

53

https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/IndustryStandard/AppleFeatures.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/IndustryStandard/AppleFeatures.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/IndustryStandard/AppleFeatures.h

11 UEFI

11.1 Introduction

UEFT (Unified Extensible Firmware Interface) is a specification that defines a software interface between an operating
system and platform firmware. This section allows to load additional UEFI modules and/or apply tweaks for the onboard
firmware. To inspect firmware contents, apply modifications and perform upgrades UEFITooll and supplementary
utilities can be used.

11.2 Drivers

Depending on the firmware a different set of drivers may be required. Loading an incompatible driver may lead your
system to unbootable state or even cause permanent firmware damage. Some of the known drivers are listed below:

54

https://uefi.org/specifications
https://github.com/LongSoft/UEFITool/releases

AppleTM — Apple Time Machine.

Windows — Windows.

Other — Custom entry (see Entries).

ResetNVRAM — Reset NVRAM system action or tool.
Shell — Entry with UEFI Shell name (e.g. OpenShell).
Tool — Any other tool.

Predefined labels are put to \EFI\OC\Resources\Label directory. Each label has .1bl or .12x suffix to represent the
scaling level. Full list of labels is provided below. All labels are mandatory.

EFIBoot — Generic OS.

Apple — Apple OS.

AppleRecv — Apple Recovery OS.

AppleTM — Apple Time Machine.

Windows — Windows.

Other — Custom entry (see Entries).

ResetNVRAM — Reset NVRAM system action or tool.
Shell — Entry with UEFI Shell name (e.g. OpenShell).
Tool — Any other tool.

Label and icon generation can be performed with bundled utilities: disklabel and icnspack. Please refer to sample
data for the details about the dimensions. Font is Helvetica 12 pt times scale factor.

Font format corresponds to AngelCode binary BMF. While there are many utilities to generate font files, currently it
is recommended to use dpFontBaker to generate bitmap font (using CoreText produces best results) and fonverter| to

export it to binary format.

WARNING: OpenCanopy is currently considered experimental and is not recommended for everyday use. Refer to
acidanthera/bugtracker#759 for more details regarding the current limitations.

11.5 OpenRuntime

OpenRuntime is an OpenCore plugin implementing 0C_FIRMWARE_RUNTIME protocol. This protocol implements multiple
features required for OpenCore that are otherwise not possible to implement in OpenCore itself as they are needed to
work in runtime, i.e. during operating system functioning. Feature highlights:

NVRAM namespaces, allowing to isolate operating systems from accessing select variables (e.g. RequestBootVarRouting
or ProtectSecureBoot).

Read-only and write-only NVRAM variables, enhancing the security of OpenCore, Lilu, and Lilu plugins, like
VirtualSMC, which implements AuthRestart support.

NVRAM isolation, allowing to protect all variables from being written from an untrusted operating system (e.g.
DisableVariableWrite).

UEFI Runtime Services memory protection management to workaround read-only mapping (e.g. EnableWriteUnprotector).

11.6 Properties

1.

APFS

Type: plist dict

Failsafe: None

Description: Provide APFS support as configured in APFS Properties section below.

. Audio

Type: plist dict
Failsafe: None
Description: Configure audio backend support described in [Audio Properties| section below.

Audio support provides a way for upstream protocols to interact with the selected hardware and audio resources.
All audio resources should reside in \EFI\OC\Resources\Audio directory. Currently the only supported audio

LY

https://www.angelcode.com/products/bmfont
https://github.com/danpla/dpfontbaker
https://github.com/danpla/dpfontbaker/pull/1
https://github.com/usr-sse2/fonverter
https://github.com/acidanthera/bugtracker/issues/759

file format is WAVE PCM. While it is driver-dependent which audio stream format is supported, most common
audio cards support 16-bit signed stereo audio at 44100 or 48000 Hz.

Audio file path is determined by audio type, audio localisation, and audio path. Each filename looks as follows:
[audio type]_[audio localisation]_[audio path].wav. For unlocalised files filename does not include the
language code and looks as follows: [audio type]_[audio path].wav.

e Audio type can be OCEFIAudio for OpenCore audio files or AXEFTAudio for macOS bootloader audio files.

e Audio localisation is a two letter language code (e.g. en) with an exception for Chinese, Spanish, and
Portuguese. Refer to APPLE_VOICE_OVER_LANGUAGE_CODE definition for the list of all supported localisations.

e Audio path is the base filename corresponding to a file identifier. For macOS bootloader audio paths refer to
APPLE_VOICE_OVER_AUDIO_FILE definition. For OpenCore audio paths refer to|0C_VOICE_OVER_AUDIO_FILE
definition. The only exception is OpenCore boot chime file, which is OCEFIAudio_VoiceOver_Boot.wav.

Audio localisation is determined separately for macOS bootloader and OpenCore. For macOS bootloader it is
set in preferences.efires archive in systemLanguage.utf8 file and is controlled by the operating system. For
OpenCore the value of prev-lang:kbd variable is used. When native audio localisation of a particular file is
missing, English language (en) localisation is used. Sample audio files can be found in |OcBinaryData repository.

. ConnectDrivers

Type: plist boolean

Failsafe: false

Description: Perform UEFI controller connection after driver loading.

This option is useful for loading drivers following UEFI driver model as they may not start by themselves.
Examples of such drivers are filesystem or audio drivers. While effective, this option may not be necessary for
drivers performing automatic connection, and may slightly slowdown the boot.

Note: Some firmwares, made by Apple in particular, only connect the boot drive to speedup the boot process.
Enable this option to be able to see all the boot options when having multiple drives.

. Drivers

Type: plist array

Failsafe: None

Description: Load selected drivers from 0C/Drivers directory.

Designed to be filled with string filenames meant to be loaded as UEFI drivers.

. Input

Type: plist dict

Failsafe: None

Description: Apply individual settings designed for input (keyboard and mouse) in Input Properties section
below.

. Output

Type: plist dict

Failsafe: None

Description: Apply individual settings designed for output (text and graphics) in Output Properties section
below.

. ProtocolOverrides

Type: plist dict

Failsafe: None

Description: Force builtin versions of select protocols described in [ProtocolOverrides Properties| section below.

Note: all protocol instances are installed prior to driver loading.

. Quirks

Type: plist dict

Failsafe: None

Description: Apply individual firmware quirks described in [Quirks Properties| section below.

. ReservedMemory
Type: plist array

58

https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/Protocol/AppleVoiceOver.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/Protocol/AppleVoiceOver.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Protocol/OcAudio.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Protocol/OcAudio.h
https://github.com/acidanthera/OcBinaryData

11.8 Audio Properties

1.

AudioCodec

Type: plist integer

Failsafe: 0

Description: Codec address on the specified audio controller for audio support.

Normally this contains first audio codec address on the builtin analog audio controller (HDEF). Audio codec
addresses, e.g. 2, can be found in the debug log (marked in beldbold-italic):

OCAU: 1/3 PciRoot (0x0)/Pci(0x1,0x0)/Pci(0x0,0x1)/VenMsg(<redacted>,0000000000000000) (4 outputs)
OCAU: 2/3 PciRoot (0x0)/Pci(0x3,0x0)/VenMsg(<redacted>,0000000000000000) (1 outputs)
OCAU: 3/3 PciRoot (0x0)/Pci(0x1B,0x0)/VenMsg(<redacted>,0260060002000000) (7 outputs)

As an alternative this value can be obtained from IOHDACodecDevice class in I/O Registry containing it in
I0HDACodecAddress field.

AudioDevice

Type: plist string

Failsafe: empty string

Description: Device path of the specified audio controller for audio support.

Normally this contains builtin analog audio controller (HDEF) device path, e.g. PciRoot (0x0) /Pci(0x1b,0x0).
The list of recognised audio controllers can be found in the debug log (marked in beldbold-italic):

OCAU: 1/3 PeiRoot(0x0)/Pei(0x1;0%0)/Pei(6x050x1)PciRoot (0x0) /Pci (0x1,0x0) /Pci (0x0,0x1) /VenMsg (<redactec
(4 outputs)

OCAU: 2/3 PeiReot{0x0)/Pei{0x350x0)PciRoot (0x0)/Pci (0x3,0x0)/VenMsg(<redacted>,00000000) (1 outputs)
OCAU: 3/3 PeiRoot(0x0)/Pei(0x1B;0%x0)PciRoot (0x0)/Pci (0x1B, 0x0) /VenMsg (<redacted>,02000000) (7

outputs)

As an alternative gfxutil -f HDEF command can be used in macOS. Specifying empty device path will result in
the first available audio controller to be used.

AudioQOut

Type: plist integer

Failsafe: 0

Description: Index of the output port of the specified codec starting from 0.

Normally this contains the index of the green out of the builtin analog audio controller (HDEF). The number of
output nodes (N) in the debug log (marked in beldbold-italic):

0CAU: 1/3 PciRoot (0x0)/Pci(0x1,0x0)/Pci(0x0,0x1)/VenMsg(<redacted>,00000000) (4—outputs4 outputs)
0CAU: 2/3 PciRoot (0x0)/Pci(0x3,0x0)/VenMsg(<redacted>,00000000) (i—eutputsl outputs)
OCAU: 3/3 PciRoot (0x0)/Pci(0x1B,0x0)/VenMsg(<redacted>,02000000) (7—eutputs? outputs)

The quickest way to find the right port is to bruteforce the values from 0 to N - 1.

. AudioSupport

Type: plist boolean
Failsafe: false
Description: Activate audio support by connecting to a backend driver.

Enabling this setting routes audio playback from builtin protocols to a dedicated audio port (AudioQOut) of the
specified codec (AudioCodec) located on the audio controller (AudioDevice).

MinimumVolume

Type: plist integer

Failsafe: 0

Description: Minimal heard volume level from 0 to 100.

Screen reader will use this volume level, when the calculated volume level is less than MinimumVolume. Boot
chime sound will not play if the calculated volume level is less than MinimumVolume.

PlayChime
Type: plist boolean

60

UEFTI firmwares generally support ConsoleControl with two rendering modes: Graphics and Text. Some
firmwares do not support ConsoleControl and rendering modes. OpenCore and macOS expect text to only be
shown in Graphics mode and graphics to be drawn in any mode. Since this is not required by UEFT specification,
exact behaviour varies.

Valid values are combinations of text renderer and rendering mode:

e BuiltinGraphics — Switch to Graphics mode and use Builtin renderer with custom ConsoleControl.
e SystemGraphics — Switch to Graphics mode and use System renderer with custom ConsoleControl.

o SystemText — Switch to Text mode and use System renderer with custom ConsoleControl.

e SystemGeneric — Use System renderer with system ConsoleControl assuming it behaves correctly.

The use of BuiltinGraphics is generally straightforward. For most platforms it is necessary to enable
ProvideConsoleGop, set Resolution to Max.

The use of System protocols is more complicated. In general the preferred setting is SystemGraphics or
SystemText. Enabling ProvideConsoleGop, setting Resolution to Max, enabling ReplaceTabWithSpace is
useful on almost all platforms. SanitiseClearScreen, IgnoreTextInGraphics, and ClearScreenOnModeSwitch
are more specific, and their use depends on the firmware.

Note: Some Macs, namely MacPro5,1, may have broken console output with newer GPUs, and thus only
BuiltinGraphics may work for them.

. ConsoleMode

Type: plist string

Failsafe: Empty string

Description: Sets console output mode as specified with the WxH (e.g. 80x24) formatted string.

Set to empty string not to change console mode. Set to Max to try to use largest available console mode. Currently
Builtin text renderer supports only one console mode, so this option is ignored.

Note: This field is best to be left empty on most firmwares.

. Resolution

Type: plist string

Failsafe: Empty string

Description: Sets console output screen resolution.

o Set to WxH@Bpp (e.g. 1920x1080@32) or WxH (e.g. 1920x1080) formatted string to request custom resolution
from GOP if available.

e Set to empty string not to change screen resolution.

e Set to Max to try to use largest available screen resolution.

On HiDPI screens APPLE_VENDOR_VARIABLE_GUID UIScale NVRAM variable may need to be set to 02 to enable
HiDPI scaling in Builtin text renderer, FileVault 2 UEFI password interface, and boot screen logo. Refer to
Recommended Variables section for more details.

Note: This will fail when console handle has no GOP protocol. When the firmware does not provide it, it can be
added with ProvideConsoleGop set to true.

. ClearScreenOnModeSwitch

Type: plist boolean

Failsafe: false

Description: Some firmwares clear only part of screen when switching from graphics to text mode, leaving a
fragment of previously drawn image visible. This option fills the entire graphics screen with black color before
switching to text mode.

Note: This option only applies to System renderer.

63

6. DirectGopRendering
Type: plist boolean
Failsafe: false
Description: Use builtin graphics output protocol renderer for console.

On some firmwares this may provide better performance or even fix rendering issues, like on MacPro5,1. However,
it is recommended not to use this option unless there is an obvious benefit as it may even result in slower scrolling.

7. IgnoreTextInGraphics
Type: plist boolean
Failsafe: false
Description: Select firmwares output text onscreen in both graphics and text mode. This is normally unexpected,
because random text may appear over graphical images and cause Ul corruption. Setting this option to true will
discard all text output when console control is in mode different from Text.

Note: This option only applies to System renderer.

8. ReplaceTabWithSpace
Type: plist boolean
Failsafe: false
Description: Some firmwares do not print tab characters or even everything that follows them, causing difficulties
or inability to use the UEFI Shell builtin text editor to edit property lists and other documents. This option
makes the console output spaces instead of tabs.

Note: This option only applies to System renderer.

9. ProvideConsoleGop
Type: plist boolean
Failsafe: false
Description: Ensure GOP (Graphics Output Protocol) on console handle.

macOS bootloader requires GOP to be present on console handle, yet the exact location of GOP is not covered
by the UEFT specification. This option will ensure GOP is installed on console handle if it is present.

Note: This option will also replace broken GOP protocol on console handle, which may be the case on MacPro5,1
with newer GPUs.

10. ReconnectOnResChange
Type: plist boolean
Failsafe: false
Description: Reconnect console controllers after changing screen resolution.

On some firmwares when screen resolution is changed via GOP, it is required to reconnect the controllers, which
produce the console protocols (simple text out). Otherwise they will not produce text based on the new resolution.

Note: On several boards this logic may result in black screen when launching OpenCore from Shell and thus it is
optional. In versions prior to 0.5.2 this option was mandatory and not configurable. Please do not use this unless
required.

11. SanitiseClearScreen
Type: plist boolean
Failsafe: false
Description: Some firmwares reset screen resolution to a failsafe value (like 1024x768) on the attempts to clear
screen contents when large display (e.g. 2K or 4K) is used. This option attempts to apply a workaround.

Note: This option only applies to System renderer. On all known affected systems ConsoleMode had to be set to
empty string for this to work.

11.11 ProtocolOverrides Properties

1. AppleAudio
Type: plist boolean

64

10.

11.

12.

13.

14.

15.

Failsafe: false
Description: Reinstalls Apple User Interface Theme protocol with a builtin version.

DataHub

Type: plist boolean

Failsafe: false

Description: Reinstalls Data Hub protocol with a builtin version. This will drep-delete all previous properties
if the protocol was already installed.

DeviceProperties

Type: plist boolean

Failsafe: false

Description: Reinstalls Device Property protocol with a builtin version. This will drep-delete all previous
properties if it was already installed. This may be used to ensure full compatibility on VMs or legacy Macs.

FirmwareVolume

Type: plist boolean

Failsafe: false

Description: Forcibly wraps Firmware Volume protocols or installs new to support custom cursor images for
File Vault 2. Should be set to true to ensure File Vault 2 compatibility on everything but VMs and legacy Macs.

Note: Several virtual machines including VMware may have corrupted cursor image in HiDPI mode and thus
may also require this setting to be enabled.

HashServices

Type: plist boolean

Failsafe: false

Description: Forcibly reinstalls Hash Services protocols with builtin versions. Should be set to true to ensure
File Vault 2 compatibility on platforms providing broken SHA-1 hashing. Can be diagnosed by invalid cursor size
with UIScale set to 02, in general platforms prior to APTIO V (Haswell and older) are affected.

0SInfo

Type: plist boolean

Failsafe: false

Description: Forcibly reinstalls OS Info protocol with builtin versions. This protocol is generally used to receive
notifications from macOS bootloader, by the firmware or by other applications.

UnicodeCollation

Type: plist boolean

Failsafe: false

Description: Forcibly reinstalls unicode collation services with builtin version. Should be set to true to ensure
UEFI Shell compatibility on platforms providing broken unicode collation. In general legacy Insyde and APTIO
platforms on Ivy Bridge and earlier are affected.

11.12 Quirks Properties

1.

2.

ExitBootServicesbPetayDeduplicateBootOrder
Type: i i i : iption:

IgnorelnvaltidFlexRatioType—plist boolean
Failsafe: false
Description: Sele

A~

in MSR_FEEX_RATIOBootOrder

66

meéwmﬁe&&mmwm BFT GLOBAL VARIABLE GUID.

This quirk requires RequestBootVarRouting to be enabled and therefore 0C_FIRMWARE_RUNTIME protocol imple-
mented in OpenRuntime.efi.

By redirecting Boot prefixed variables to a separate GUID namespace with the help of RequestBootVarRoutin
quirk we achieve multiple goals:

e Operating systems are jailed and only controlled by OpenCore boot environment to enhance security.

¢ Operating systems do not mess with OpenCore boot priority, and guarantee fluent updates and hibernation
wakes for cases that require reboots with OpenCore in the middle.

« Potentially incompatible boot entries, such as macOS entries, are not deleted or anyhow corrupted.

However, some firmwares do their own boot option scanning upon startup by checking file presence on the
available disks. Quite often this scanning includes non-standard locations, such as Windows Bootloader paths.
Normally it is not an issue, but some firmwares, ASUS firmwares on APTIO V in particular, have bugs. For them
scanning is implemented improperly, and firmware preferences may get accidentally corrupted due to BootOrder
entry duplication (each option will be added twice) making it impossible to boot without cleaning NVRAM.

To trigger the bug one should have some valid boot options (e.g. OpenCore) and then install Windows with
RequestBootVarRouting enabled. As Windows bootloader option will not be created by Windows installer, the
firmware will attempt to create it itself, and then corrupt its boot option list.

This quirk

m%e—Bee%F### &karemoves all du hcates in BootOrder V&Pmb}esﬂpeﬁ—wke—A:rﬂi%eﬁ‘ﬁﬂes—&&eﬂdéeé%e%he

i it - i e S varlable attemptin to resolve the consequences of the
bugs upon OpenCore loading. It is recommended to use this key along with BootProtect option.

. ExitBootServicesDela

Description: Adds delay in microseconds after EXIT BOOT SERVICES event.

This is a very ugly quirk to circumvent "Still waiting for root device’ message on select APTIO IV firmwares,
namely ASUS Z87-Pro, when using FileVault 2 in particular. Tt seems that for some reason they execute code
in parallel to EXTT_BOQT_SERVICES, which results in SATA controller being inaccessible from macOS. A better
approach should be found in some future. Expect 3-5 seconds to be enough in case the quirk is needed.

Type: plist boolean
Description: Select firmwares, namely APTIO IV, may contain invalid values in MSR_FLEX RATIO (0x194) MSR
register, These values may cause macOS boot failure on Intel platforms.

Note: While the option is not supposed to induce harm on unaffected firmwares, its usage is not recommended
when it is not required.

Type: plist boolean

Description: Attempt to detach USB controller ownership from the firmware driver. While most firmwares
manage to properly do that, or at least have an option for, select firmwares do not. As a result, operating system
may_freeze upon boot. Not recommended unless required.

. RequestBootVarRouting
Type: plist boolean
Failsafe: false

67

Description: Request redirect of all Boot prefixed variables from EFI_GLOBAL_VARIABLE_GUID to
0C_VENDOR_VARIABLE_GUID.

This quirk requires 0C_FIRMWARE_RUNTIME protocol implemented in OpenRuntime.efi. The quirk lets default
boot entry preservation at times when firmwares delete incompatible boot entries. Simply said, you are required
to enable this quirk to be able to reliably use Startup Diskl preference pane in a firmware that is not compatible
with macOS boot entries by design.

9. TscSyncTimeout

Description: Attempts to perform TSC synchronisation with a specified timeout.

The primary purpose of this quirk is to enable early bootstrap TSC synchronisation on some server and lapto
models when running a debug XNU kernel. For the debug kernel the TSC needs to be kept in sync across
the cores before any kext could kick in rendering all other solutions problematic. The timeout is specified in

microseconds and depends on the amount of cores present on the platform, the recommended starting value is
500000.

This is an experimental quirk, which should only be used for the aforementioned problem. In all other cases the

uirk may render the operating system unstable and is not recommended. The recommended solution in the
other cases is to install a kernel driver like VoodooTSCSync, TSCAdjustReset, or CpuTscSync| (a more specialised

variant of VoodooTSCSync for newer laptops).
Note: The reason this quirk cannot replace the kernel driver is because it cannot operate in ACPI S3 mode (slee

wake) and because the UEFI firmwares provide very limited multicore support preventing the precise update of
the MSR registers.

10. UnblockFsConnect
Type: plist boolean
Failsafe: false
Description: Some firmwares block partition handles by opening them in By Driver mode, which results in File
System protocols being unable to install.

Note: The quirk is mostly relevant for select HP laptops with no drives listed.

11.13 ReservedMemory Properties

1. Address
Type: plist integer
Failsafe: 0
Description: Start address of the reserved memory region, which should be allocated as reserved effectively
marking the memory of this type inaccessible to the operating system.

The addresses written here must be part of the memory map, have EfiConventionalMemory type, and page-aligned
(4 KBs).

2. Comment
Type: plist string
Failsafe: Empty string
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

3. Size
Type: plist integer
Failsafe: 0
Description: Size of the reserved memory region, must be page-aligned (4 KBs).

4. Enabled
Type: plist boolean
Failsafe: false
Description: This region will not be reserved unless set to true.

68

https://support.apple.com/HT202796
https://github.com/RehabMan/VoodooTSCSync
https://github.com/interferenc/TSCAdjustReset
https://github.com/lvs1974/CpuTscSync

12 Troubleshooting

12.1 Windows support
Can I install Windows?

While no official Windows support is provided, 64-bit UEFI Windows installations (Windows 8 and above) prepared
with Boot Camp are supposed to work. Third-party UEFT installations as well as systems partially supporting UEFI
boot, like Windows 7, might work with some extra precautions. Things to keep in mind:

o MBR (Master Boot Record) installations are legacy and will not be supported.
E}EFI}]I. ,:: }E }:I ’ g _ .E\,\; . E] B .i .] ‘”

o All the modifications applied (to ACPI, NVRAM, SMBIOS, etc.) are supposed to be operating system agnostic,
i.e. apply equally regardless of the OS booted. This enables Boot Camp software experience on Windows.

e macOS requires the first partition to be EFI System Partition, and does not support the default Windows layout.
While OpenCore does have a workaround for this, it is highly recommend not to rely on it and install properly.

e Windows may need to be reactivated. To avoid it consider setting SystemUUID to the original firmware UUID.
Be warned, on old firmwares it may be invalid, i.e. not random. In case you still have issues, consider using
HWID or KMS38 license or making the use Custom UpdateSMBIOSMode. Other nuances of Windows activation
are out of the scope of this document and can be found online.

What additional software do I need?

To enable operating system switching and install relevant drivers in the majority of cases you will need Windows
support software from Boot Camp. For simplicity of the download process or when configuring an already installed
Windows version a third-party utility, Brigadier, can be used successfully. Note, that you may have to download and
install |[7-Zip| prior to using Brigadier.

Remember to always use the latest version of Windows support software from Boot Camp, as versions prior to 6.1 do
not support APFS, and thus will not function correctly. To download newest software pass most recent Mac model
to Brigadier, for example ./brigadier.exe -m iMac19,1. To install Boot Camp on an unsupported Mac model
afterwards run PowerShell as Administrator and enter msiexec /i BootCamp.msi. In case you already have a previous
version of Boot Camp installed you will have to remove it first by running msiexec /x BootCamp.msi command.
BootCamp.msi file is located in BootCamp/Drivers/Apple directory and can be reached through Windows Explorer.

While Windows support software from Boot Camp solves most of compatibility problems, sometimes you may have to
address some of them manually:

e To invert mouse wheel scroll direction FlipFlopWheel must be set to 1 as explained on SuperUserl

e RealTimeIsUniversal must be set to 1 to avoid time desync between Windows and macOS as explained on
SuperUser| (this one is usually not needed).

e To access Apple filesystems like HFS and APFS separate software may need to be installed. Some of the known
tools-utilities are: Apple HFS+ driver| (hack for Windows 10), HFSExplorer, MacDrive, Paragon APFS, Paragon
HFS+, TransMac, etc. Remember to never ever attempt to modify Apple file systems from Windows as this
often leads to irrecoverable data loss.

Why do I see Basic data partition in Boot Camp Startup Disk control panel?

Boot Camp control panel uses GPT partition table to obtain each boot option name. After installing Windows
separately you will have to relabel the partition manually. This can be done with many teels-utilities including
open-source [gdisk| utility. Reference example:

PS C:\gdisk> .\gdisk64.exe \\.\physicaldriveO
GPT fdisk (gdisk) version 1.0.4

Command (7 for help): p

Disk \\.\physicaldriveO: 419430400 sectors, 200.0 GiB
Sector size (logical): 512 bytes

Disk identifier (GUID): DEC57EB1-B3B5-49B2-95F5-3B8C4D3E4E12

69

https://github.com/acidanthera/bugtracker/issues/327
https://support.apple.com/boot-camp
https://github.com/timsutton/brigadier
https://www.7-zip.org
https://superuser.com/a/364353
https://superuser.com/q/494432
https://forums.macrumors.com/threads/apple-hfs-windows-driver-download.1368010/
https://forums.macrumors.com/threads/apple-hfs-windows-driver-download.1368010/post-24180079
http://www.catacombae.org/hfsexplorer
https://sourceforge.net/projects/gptfdisk

o Logging is enabled (1) and shown onscreen (2): Misc — Debug — Target = 3.

o Logged messages from at least DEBUG_ERROR (0x80000000), DEBUG_WARN (0x00000002), and DEBUG_INFO
(0x00000040) levels are visible onscreen: Misc — Debug — DisplayLevel = 0x80000042.

o Critical error messages, like DEBUG_ERROR, stop booting: Misc — Security — HaltLevel = 0x80000000.

o Watch Dog is disabled to prevent automatic reboot: Misc — Debug — DisableWatchDog = true.

o Boot Picker (entry selector) is enabled: Misc — Boot — ShowPicker = true.

If there is no obvious error, check the available hacks in Quirks sections one by one. For early boot troubleshooting,
for instance, when OpenCore menu does not appear, using UEFI Shell (bundled with OpenCore) may help to
see early debug messages.

2. How to debug macOS boot failure?

e Refer to boot-args values like debug=0x100, keepsyms=1, -v, and similar.
« Do not forget about AppleDebug and ApplePanic properties.
o Take care of Booter, Kernel, and UEFI quirks.

AR AR AAAANRAAANAAAANAINAR S ASRARAANAAAANAAAT

o Consider using serial port to inspect early kernel boot failures. For this you may need debug=0x108
serial=5, and msgbuf=1048576 arguments. Refer to the patches in Sample.plist when dying before serial

o Always read the logs carefully.
3. How to customise boot entries?
OpenCore follows standard Apple Bless model and extracts the entry name from .contentDetails and

.disk_label.contentDetails files in the booter directory if present. These files contain an ASCII string
with an entry title, which may then be customised by the user.

4. How to choose the default boot entry?

OpenCore uses the primary UEFI boot option to select the default entry. This choice can be altered from UEFI
Setup, with the macOS [Startup Disk| preference, or the Windows Boot Camp| Control Panel. Since choosing
OpenCore’s BOOTx64.EFI as a primary boot option limits this functionality in addition to several firmwares
deleting incompatible boot options, potentially including those created by macOS, you are strongly encouraged to
use the RequestBootVarRouting quirk, which will preserve your selection made in the operating system within
the OpenCore variable space. Note, that RequestBootVarRouting requires a separate driver for functioning.

5. What is the simplest way to install macOS?

Copy online recovery image (*.dmg and *.chunklist files) to com.apple.recovery.boot directory on a FAT32
partition with OpenCore. Load OpenCore Boot Picker and choose the entry, it will have a (dmg) suffix. Custom
name may be created by providing .contentDetails file.

To download recovery online you may use teolrem-macrecovery.py, builtin tool.

For offline installation refer to [How to create a bootable installer for macOS| article. Apart from App Store and
softwareupdate utility there also are third-party utilities| to download an offline image.

6. Why do online recovery images (*.dmg) fail to load?
This may be caused by missing HFS+ driver, as all presently known recovery volumes have HFS+ filesystem.
7. Can I use this on Apple hardware or virtual machines?

Sure, most relatively modern Mac models including MacPro5,1 and virtual machines are fully supported. Even
though there are little to none specific details relevant to Mac hardware, some ongoing instructions can be found
in-on MacRumors.com.

8. Why do Find&Replace patches must equal in length?

For machine code (x86 code) it is not possible to do differently sized replacements due to relative addressing. For
ACPI code this is risky, and is technically equivalent to ACPI table replacement, thus not implemented. More
detailed explanation can be found on [AppleLife.ru or in the ACPI section of this document.

9. How can I migrate from-AptioMemoryFixdecide which Booter quirks to use?
i i These quirks originate from AptioMemoryFix e i

71

https://support.apple.com/HT202796
https://support.apple.com/guide/bootcamp-control-panel/start-up-your-mac-in-windows-or-macos-bcmp29b8ac66/mac
https://github.com/acidanthera/OpenCorePkg/blob/master/Utilities/macrecovery/macrecovery.py
https://support.apple.com/HT201372
https://github.com/corpnewt/gibMacOS
https://forums.macrumors.com/threads/opencore-on-the-mac-pro.2207814
https://en.wikipedia.org/w/index.php?title=Relative_addressing
https://applelife.ru/posts/819790

s—driver but provide a wider set of
han es specific to modern systems. Note, that OpenRuntime drlver is required for most configurations. To get
a configuration similar to AptioMemoryFix you may try enabling the following set of quirks:

e ProvideConsoleGop (UEFI quirk)
e AvoidRuntimeDefrag

e DiscardHibernateMap

¢ EnableSafeModeSlide

e EnableWriteUnprotector

e ForceExitBootServices

e ProtectMemoryRegions

¢ ProvideCustomSlide

o SetupVirtualMapRebuildAppleMemorylMa
¢ ShrinkMemoryMapSetupVirtualMa

However, as of today such set is strongly discouraged as some of these quirks are not necessary to be enabled or
need additional quirks. For example, DevirtualiseMmio and ProtectUefiServices are often required, while
DiscardHibernateMap and ForceExitBootServices are rarely necessary.

Unfortunately for some quirks like RebuildAppleMemoryMap, EnableWriteUnprotector, ProtectMemoryRegions,
RebuildAppleMemoryMap, SetupVirtualMap. and SyncRuntimePermissions there is no definite approach even
on similar systems. so trying all their combinations may be required for optimal setup. Refer to individual quirk
descriptions in this document for more details.

72

	Introduction
	Generic Terms

	Configuration Structure
	Setup
	Directory Structure
	Installation and Upgrade
	Contribution
	Coding conventions
	Debugging

	ACPI
	Introduction
	Properties
	Add Properties
	DIFkeeppageDIFchangeDIFkeeppageDIFchangeDIFkeeppageDIFchangeDelete DIFkeeppageDIFchangeProperties
	Patch Properties
	Quirks Properties

	Booter
	Introduction
	Properties
	MmioWhitelist Properties

	DeviceProperties
	Introduction
	Properties
	Common Properties

	Emulate Properties
	Patch Properties
	Quirks Properties
	Misc
	Introduction
	Properties
	Boot Properties
	Debug Properties
	Security Properties
	Entry Properties

	NVRAM
	Introduction
	Properties
	Other Variables

	PlatformInfo
	Properties
	Generic Properties
	PlatformNVRAM Properties
	SMBIOS Properties

	UEFI
	Introduction
	Drivers
	OpenRuntime
	Properties
	Audio Properties
	ProtocolOverrides Properties
	Quirks Properties
	ReservedMemory Properties

	Troubleshooting
	Windows support

