OpenCore

Reference Manual (0.5.90.6.0)
[2020.06.24]

Copyright ©2018-2020 vit9696

1 Introduction

This document provides information on [OpenCore user configuration file format used to setup the correct functioning
of macOS operating system. It is to be read as the official clarification of expected OpenCore behaviour. All deviations,
if found in published OpenCore releases, shall be considered documentation or implementation bugs, and are requested
to be reported through Acidanthera Bugtracker. Errata sheet is available in OpenCorePkg repository._

This document is structured as a specification, and is not meant to provide a step by step algorithm for configuring
end-user board support package (BSP). The intended audience of the document are programmers and engineers with
basic understanding of macOS internals and UEFI functioning. For these reasons this document is available exclusively
in English, and all other sources or translations of this document are unofficial and may contain errors.

Third-party articles, utilities, books, and alike may be more useful for a wider audience as they could provide guide-like
material. However, they are prone to their authors’ preferences, tastes, this document misinterpretation, and essential
obsolescence. In case you use these sources, for example, Dortania/s |OpenCore Desktop Guide| and related materiall
please ensure to follow this document for every made decision and judge its consequences.

Be warned that regardless of the sources used you are required to fully understand every dedicated OpenCore
configuration option and concept prior to reporting any issues in |Acidanthera Bugtracker.

1.1 Generic Terms

e plist — Subset of ASCII Property List format written in XML, also know as XML plist format version
1. Uniform Type Identifier (UTI): com.apple.property-list. Plists consist of plist objects, which are
combined to form a hierarchical structure. Due to plist format not being well-defined, all the definitions of this
document may only be applied after plist is considered valid by running plutil -lint. External references:
https://www.apple.com/DTDs/PropertyList-1.0.dtd, man plutil.

o plist type — plist collections (plist array, plist dictionary, plist key) and primitives (plist string,
plist data, plist date, plist boolean, plist integer, plist real).

e plist object — definite realisation of plist type, which may be interpreted as value.
e plist array — array-like collection, conforms to array. Consists of zero or more plist objects.

e plist dictionary — map-like (associative array) collection, conforms to dict. Consists of zero or more plist
keys.

e plist key — contains one plist object going by the name of plist key, conforms to key. Consists of
printable 7-bit ASCII characters.

e plist string — printable 7-bit ASCII string, conforms to string.

e plist data — base64-encoded blob, conforms to data.

e plist date — ISO-8601 date, conforms to date, unsupported.

o plist boolean — logical state object, which is either true (1) or false (0), conforms to true and false.

e plist integer — possibly signed integer number in base 10, conforms to integer. Fits in 64-bit unsigned integer
in two’s complement representation, unless a smaller signed or unsigned integral type is explicitly mentioned in
specific plist object description.

e plist real — floating point number, conforms to real, unsupported.

e plist metadata — value cast to data by the implementation. Permits passing plist string, in which case
the result is represented by a null-terminated sequence of bytes (aka C string), plist integer, in which case
the result is represented by 32-bit little endian sequence of bytes in two’s complement representation, plist
boolean, in which case the value is one byte: 01 for true and 00 for false, and plist data itself. All other
types or larger integers invoke undefined behaviour.

https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/bugtracker
https://github.com/acidanthera/OpenCorePkg/blob/master/Docs/Errata/Errata.pdf
https://dortania.github.io
https://dortania.github.io/OpenCore-Desktop-Guide
https://dortania.github.io/getting-started
https://github.com/acidanthera/bugtracker

Type Value

plist integer 0 (<integer>0</integer>)
plist boolean False (<false/>)
plist tristate False (<false/>)

2.3 Configuration Structure

0C config is separated into following sections, which are described in separate sections of this document. By default it
is tried to not enable anything and optionally provide kill switches with Enable property for plist dict entries. In
general the configuration is written idiomatically to group similar actions in subsections:

e Add provides support for data addition. Existing data will not be overridden, and needs to be handled separately
with Delete if necessary.

e Delete provides support for data removal.

e Patch provides support for data modification.

e Quirks provides support for specific hacks.

Root configuration entries consist of the following:

e ACPI

e Booter

e DeviceProperties
e Kernel

o [Misc

e NVRAM

e PlatformInfo

e UEFI

It is possible to perform basic validation of the configuration by using CenfigValidityocvalidate utility. Please
note, that CenfigValidityocvalidate must match the used OpenCore release and may not be able to detect all
configuration flaws present in the file.

Note: Currently most properties try to have defined values even if not specified in the configuration for safety reasons.
This behaviour should not be relied upon, and all fields must be properly specified in the configuration.

3.3 Contribution

OpenCore can be compiled as an ordinary EDK II package. Since UDK| development was abandoned by TianoCore,
OpenCore requires the use of EDK II Stable. Currently supported EDK II release is hosted in [acidanthera/audk. The
required patches for the package are present in Patches directory.

The only officially supported toolchain is XCODE5. Other toolchains might work, but are neither supported, nor
recommended. Contribution of clean patches is welcome. Please do follow [EDK II C Codestylel

To compile with XCODE5, besides Xcode, one should also install NASM and MTOC. The latest Xcode version is
recommended for use despite the toolchain name. Example command sequence may look as follows:

e ol) /Lot thub- ocidant] /evedle_UDK
git clome —-recursive https://github.com/acidanthera/audk UDK
cd UDK

git clone https://github.com/acidanthera/OpenCorePkg

source edksetup.sh

make -C BaseTools

build -a X64 -b RELEASE -t XCODE5 -p OpenCorePkg/OpenCorePkg.dsc

Listing 1: Compilation Commands

For IDE usage Xcode projects are available in the root of the repositories. Another approach could be Sublime Text
with [EasyClangComplete plugin. Add .clang_complete file with similar content to your UDK root:

-I/UefiPackages/MdePkg
-I/UefiPackages/MdePkg/Include
-I/UefiPackages/MdePkg/Include/X64
-I/UefiPackages/MdeModulePkg
-I/UefiPackages/MdeModulePkg/Include
-I/UefiPackages/MdeModulePkg/Include/X64
-I/UefiPackages/0OpenCorePkg/Include/AMI
-I/UefiPackages/0OpenCorePkg/Include/Acidanthera
-I/UefiPackages/0OpenCorePkg/Include/Apple
-I/UefiPackages/OpenCorePkg/Include/Apple/X64
-I/UefiPackages/0OpenCorePkg/Include/Duet
-I/UefiPackages/0OpenCorePkg/Include/Generic
-I/UefiPackages/0OpenCorePkg/Include/Intel
-I/UefiPackages/0OpenCorePkg/Include/Microsoft
-I/UefiPackages/OpenCorePkg/Include/VMware
-I/UefiPackages/0vmfPkg/Include
-I/UefiPackages/UefiCpuPkg/Include
-IInclude

-include
/UefiPackages/MdePkg/Include/Uefi.h
-fshort-wchar

-Wall

-Wextra

-Wno-unused-parameter

-Wno-missing-braces
-Wno-missing-field-initializers
-Wno-tautological-compare

-Wno-sign-compare

-Wno-varargs

-Wno-unused-const-variable
-DOC_TARGET_NOOPT=1

-DNO_MSABI_VA_FUNCS=1

Listing 2: ECC Configuration

https://github.com/tianocore/tianocore.github.io/wiki/EDK-II
https://github.com/tianocore/tianocore.github.io/wiki/UDK
https://github.com/tianocore/tianocore.github.io/wiki/EDK-II#stable-tags
https://github.com/acidanthera/audk
https://github.com/tianocore/tianocore.github.io/wiki/Code-Style-C
https://developer.apple.com/xcode
https://www.nasm.us
https://github.com/acidanthera/ocbuild/tree/master/external
https://www.sublimetext.com
https://niosus.github.io/EasyClangComplete

10.

11.

12.

13.

14.

ProtectSecureBoot

Type: plist boolean

Failsafe: false

Description: Protect UEFI Secure Boot variables from being written.

Reports security violation during attempts to write to db, dbx, PK, and KEK variables from the operating system.

Note: This quirk mainly attempts to avoid issues with NVRAM implementations with problematic defragmentation,
such as select Insyde or MacPro5, 1.

ProtectUefiServices

Type: plist boolean

Failsafe: false

Description: Protect UEFT services from being overridden by the firmware.

Some modern firmwares including both hardware and virtual machines, like VMware, may update pointers to
UEFT services during driver loading and related actions. Consequentially this directly breaks other quirks that
affect memory management, like DevirtualiseMmio, ProtectMemoryRegions, or RebuildAppleMemoryMap, and
may also break other quirks depending on the effects of these.

Note: On VMware the need for this quirk may be diagnosed by “Your Mac OS guest might run unreliably with
more than one virtual core.” message.

ProvideCustomSlide

Type: plist boolean

Failsafe: false

Description: Provide custom KASLR slide on low memory.

This option performs memory map analysis of your firmware and checks whether all slides (from 1 to 255) can be
used. As boot.efi generates this value randomly with rdrand or pseudo randomly rdtsc, there is a chance of
boot failure when it chooses a conflicting slide. In case potential conflicts exist, this option forces macOS to use a
pseudo random value among the available ones. This also ensures that slide= argument is never passed to the
operating system for security reasons.

Note: The necessity of this quirk is determined by OCABC: Only N/256 slide values are usable! message
in the debug log. If the message is present, this option is to be enabled.

Description: Provide maximum KASLR slide when higher ones are unavailable.

This option overrides the maximum slide of 255 by a user specified value between 1 and 254 inclusive when
ProvideCustomSlide is enabled. Tt is believed that modern firmwares allocate pool memory from top to bottom,
effectively resulting in free memory at the time of slide scanning being later used as temporary memory during
kernel loading. In case those memory are unavailable, this option can stop evaluating higher slides.

Note:_ The necessity of this quirk is determined by random boot failure when ProvideCustomSlide is enabled
and the randomized slide fall into the unavailable range. When AppleDebug is enabled, usually the debug log may.
contain messages like AAPL: _[EB| ‘LD:LKC] } Erz(0x9). To find the optimal value, manually append slide=X
to boot-args and log the largest one that won’t cause boot failure.

RebuildAppleMemoryMap

Type: plist boolean

Failsafe: false

Description: Generate Memory Map compatible with macOS.

Apple kernel has several limitations in parsing UEFI memory map:

e« Memory map size must not exceed 4096 bytes as Apple kernel maps it as a single 4K page. Since some
firmwares have very large memory maps (approximately over 100 entries) Apple kernel will crash at boot.
o Memory attributes table is ignored. EfiRuntimeServicesCode memory statically gets RX permissions, and
all other memory types get RW permissions. Since some firmware drivers may write to global variables

18

8 Misc

8.1 Introduction

This section contains miscellaneous configuration affecting OpenCore operating system loading behaviour as well as
other entries, which do not go to any other section.

OpenCore tries to follow “bless” model also known as “Apple Boot Policy”. The primary specialty of “bless” model
is to allow embedding boot options within the file system (and be accessible through a specialised driver) as well
as supporting a broader range of predefined boot paths compared to the removable media list found in the UEFI
specification.

Each partition will only be used for booting when it corresponds to “Scan policy”: a set of restrictions to only use
partitions with specific file systems and from specific device types. Scan policy behaviour is discussed in ScanPolicy
property description.

Scan process starts with obtaining all the partitions filtered with “Scan policy”. Each partition may produce multiple
primary and alternate options. Primary options describe operating systems installed on this media. Alternate options
describe recovery options for the operating systems on the media. It is possible for alternate options to exist without
primary options and vice versa. Be warned that the options may not necessarily describe the operating systems on the
same partition. Each primary and alternate option can be an auxiliary option or not, refer to HideAuxiliary for more
details. Algorithm to determine boot options behaves as follows:

1. Obtain all available partition handles filtered by “Scan policy” (and driver availability).
2. Obtain all available boot options from BootOrder UEFI variable.
3. For each found boot option:
¢ Retrieve device path of the boot option.
o Perform fixups (e.g. NVMe subtype correction) and expansion (e.g. for Boot Camp) of the device path.
e Obtain device handle by locating device path of the resulting device path (ignore it on failure).
o Find device handle in the list of partition handles (ignore it if missing).
o For disk device paths (not specifying a bootloader) execute “bless” (may return > 1 entry).
e For file device paths check presence on the file system directly.

¢ On OpenCore boot partition exclude all OpenCore bootstrap files by header checks.
e Mark device handle as used in the list of partition handles if any.
¢ Register the resulting entries as primary options and determine their types.
The option will become auxiliary for some types (e.g. Apple HFS recovery).
4. For each partition handle:
o If partition handle is marked as unused execute “bless” primary option list retrieval.
In case BlessOverrlde hst is set, not only standard “bless” pathb will be found but also custom ones.

¢ On OpenCore boot partltlon exclude all OpenCore bootstrap files by header Checks
¢ Register the resulting entries as primary options and determine their types if found.
The option will become auxiliary for some types (e.g. Apple HFS recovery).

o If partition already has primary options of “Apple Recovery” type proceed to next handle.

o Lookup alternate entries by “bless” recovery option list retrieval and predefined paths.

o Register the resulting entries as alternate auxiliary options and determine their types if found.
5. Custom entries and tools are added as primary options without any checks with respect to Auxiliary.
6. System entries (e.g. Reset NVRAM) are added as primary auxiliary options.

The display order of the boot options in the picker and the boot process are determined separately from the scanning
algorithm. The display order as follows:

e Alternate options follow corresponding primary options, i.e. Apple recovery will be following the relevant macOS
option whenever possible.

e Options will be listed in file system handle firmware order to maintain an established order across the reboots
regardless of the chosen operating system for loading.

e Custom entries, tools, and system entries will be added after all other options.

o Auxiliary options will only show upon entering “Advanced Mode” in the picker (usually by pressing “Space”).

The boot process is as follows:

28

Try looking up first valid primary option through BootNext UEFI variable.

On failure looking up first valid primary option through BootOrder UEFI variable.
Mark the option as the default option to boot.

Boot option through the picker or without it depending on the ShowPicker option.
Show picker on failure otherwise.

Note 1: This process is meant to work reliably only when RequestBootVarRouting option is enabled or the firmware
does not control UEFI boot options (OpenDuetPkg or custom BDS). Without BootProtect it also is possible that other
operating systems overwrite OpenCore, make sure to enable it if you plan to use them.

Note 2: UEFI variable boot options’ boot arguments will be removed if present as they may contain arguments
compromising the operating system, which is undesired once secure boot is enabled.

Note 8: Some operating systems, namely Windows, will create their boot option and mark it as top most upon first
boot or after NVRAM Reset. When this happens default boot entry choice will update till next manual reconfiguration.

8.2

1.

Properties

Boot
Type: plist dict
Description: Apply boot configuration described in section below.

. BlessOverride

Type: plist array
Description: Add custom scanning paths through bless model.

Designed to be filled with plist string entries containing absolute UEFI paths to customised bootloaders,
for example, \EFI\debian\grubx64.efi for Debian bootloader. This allows unusual boot paths to be au-
tomaticlly discovered by the boot picker. Designwise they are equivalent to predefined blessed path, such
as \System\Library\CoreServices\boot.efi or \EFI\Microsoft\Boot\bootmgfw.efi, but unlike predefined
bless paths they have highest priority.

Debug

Type: plist dict

Description: Apply debug configuration described in Debug Properties section below.
Entries

Type: plist array
Description: Add boot entries to boot picker.

Designed to be filled with plist dict values, describing each load entry. See Entry Properties section below.

Security
Type: plist dict
Description: Apply security configuration described in [Security Properties| section below.

Tools
Type: plist array
Description: Add tool entries to boot picker.

Designed to be filled with plist dict values, describing each load entry. See Entry Properties section below.

Note: Select tools, for example, UEFI Shell, are very dangerous and MUST NOT appear in production
configurations, especially in vaulted ones and protected with secure boot, as they may be used to easily bypass
secure boot chain.

Boot Properties

1. ConsoleAttributes

Type: plist integer
Failsafe: 0
Description: Sets specific attributes for console.

29

Text renderer supports colour arguments as a sum of foreground and background eelers—colours according to
UEFT specification. The value of black background and black foreground (0) is reserved. List of colour names:

e 0x00 — EFI_BLACK

e 0x01 — EFI_BLUE

e 0x02 — EFI_GREEN

e 0x03 — EFI_CYAN

e 0x04 — EFI_RED

e 0x05 — EFI_MAGENTA

e 0x06 — EFI_BROWN

e 0x07 — EFI_LIGHTGRAY

e 0x08 — EFI_DARKGRAY

e 0x09 — EFI_LIGHTBLUE

e 0xOA — EFI_LIGHTGREEN

e 0xOB — EFI_LIGHTCYAN

e 0x0C — EFI_LIGHTRED

e 0xOD — EFI_LIGHTMAGENTA

e 0xOE — EFI_YELLOW

e 0xOF — EFI_WHITE

e 0x00 — EFI_BACKGROUND_BLACK
e 0x10 — EFI_BACKGROUND_BLUE
e 0x20 — EFI_BACKGROUND_GREEN
e 0x30 — EFI_BACKGROUND_CYAN
e 0x40 — EFI_BACKGROUND_RED

e 0x50 — EFI_BACKGROUND_MAGENTA
e 0x60 — EFI_BACKGROUND_BROWN
e 0x70 — EFI_BACKGROUND_LIGHTGRAY

Note: This option may not work well with System text renderer. Setting a background different from black could
help testing proper GOP functioning.

. HibernateMode

Type: plist string
Failsafe: None
Description: Hibernation detection mode. The following modes are supported:

e None — Avoid hibernation for your own good.
e Auto — Use RTC and NVRAM detection.

¢ RTC — Use RTC detection.

¢ NVRAM — Use NVRAM detection.

. HideAuxiliary

Type: plist boolean

Failsafe: false

Description: Hides auxiliary entries from picker menu by default.

An entry is considered auxiliary when at least one of the following applies:

o Entry is macOS recovery.

e Entry is macOS Time Machine.

o Entry is explicitly marked as Auxiliary.

o Entry is system (e.g. €tean—Reset NVRAM).

To see all entries picker menu needs to be reloaded in extended mode by pressing Spacebar key. Hiding auxiliary
entries may increase boot performance for multidisk systems.

. PickerAttributes

Type: plist integer
Failsafe: 0
Description: Sets specific attributes for picker.

Different pickers may be configured through the attribute mask containing OpenCore-reserved (BITO~BIT15) and

30

o 0x08 (bit 3) — Enable serial port logging.

o 0x10 (bit 4) — Enable UEFI variable logging.

e 0x20 (bit 5) — Enable non-volatile UEFI variable logging.
o 0x40 (bit 6) — Enable logging to file.

Console logging prints less than all the other variants. Depending on the build type (RELEASE, DEBUG, or NOOPT)
different amount of logging may be read (from least to most).

Data Hub log will not log kernel and kext patches. To obtain Data Hub log use the following command in macOS:

ioreg -1w0 -p IODeviceTree | grep boot-log | sort | sed 's/.*<\(.*\)>.*/\1/' | xxd -r -p

UEFT variable log does not include some messages and has no performance data. For safety reasons log size is
limited to 32 kilobytes. Some firmwares may truncate it much earlier or drop completely if they have no memory.
Using non-volatile flag will write the log to NVRAM flash after every printed line. To obtain UEFT variable log
use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-log |
awk '{gsub(/%0d%0a%00/,"") ;gsub(/%0d%0a/,"\n")}1'

Warning: Some firmwares are reported to have broken NVRAM garbage collection. This means that they may
not be able to always free space after variable deletion. Do not use non-volatile NVRAM logging without extra
need on such devices.

While OpenCore boot log already contains basic version information with build type and date, this data may also
be found in NVRAM in opencore-version variable even with boot log disabled.

File logging will create a file named opencore-YYYY-MM-DD-HHMMSS. txt at EFI volume root with log contents
(the upper case letter sequence is replaced with date and time from the firmware). Please be warned that some
file system drivers present in firmwares are not reliable, and may corrupt data when writing files through UEFT.
Log is attempted to be written in the safest manner, and thus is very slow. Ensure that DisableWatchDog is

set to true when you use a slow drive. Try to avoid frequent use of this option when dealing with flash drives as

large 1/O amounts may speedup memory wear and render this flash drive unusable in shorter time.

When interpreting the log, note that the lines are prefixed with a tag describing the relevant location (module)
of the log line allowing one to better attribute the line to the functionality. The list of currently used tags is
provided below.

Drivers and tools:

e BMF — OpenCanopy, bitmap font
¢ BS — Bootstrap

e GSTT — GoptStop

e HDA — AudioDxe

e KKT — KeyTester

¢ MMDD — MmapDump

e 0OCPAVP — PavpProvision
e OCRST — ResetSystem

e 0CUI — OpenCanopy

¢ 0C — OpenCore main

e VMOPT — VerifyMemOpt

Libraries:

e AAPL — OcDebugLogLib, Apple EfiBoot logging
e 0CABC — OcAfterBootCompatLib

e OCAE — OcAppleEventLib

e 0CAK — OcAppleKernelLib

e 0CAU — OcAudioLib

e 0CAV — OcApplelmageVerificationLib

e 0CA — OcAcpiLib

e 0CBP — OcAppleBootPolicyLib

34

e 0CB — OcBootManagementLib
e 0CCL — OcAppleChunkListLib
e 0CCPU — OcCpulLib

e 0CC — OcConsoleLib

e 0OCDH — OcDataHubLib

e 0CDI — OcAppleDiskImageLib
e 0CFSQ — OcFileLib, UnblockFs quirk
e 0OCFS — OcFileLib

e OCFV — OcFirmwareVolumeLib
e 0OCHS — OcHashServicesLib

e 0CIC — OclmageConversionLib
e 0CII — OclnputLib

e 0CJS — OcApfsLib

e 0CKM — OcAppleKeyMapLib

e OCL — OcDebuglLogLib

e 0CMCO — OcMachoLib

e OCME — OcHeciLib

e OCMM — OcMemoryLib

e 0OCPI — OcFileLib, partition info
e OCPNG — OcPngLib

e OCRAM — OcAppleRamDiskLib
e 0OCRTC — OcRtcLib

e 0CSB — OcAppleSecureBootLib
e 0CSMB — OcSmbiosLib

e 0CSMC — OcSmcLib

e 0CST — OcStorageLib

e 0CS — OcSerializedLib

e 0OCTPL — OcTemplateLib

e 0CUC — OcUnicodeCollationLib
¢ 0CUT — OcAppleUserInterfaceThemeLib
e OCXML — OcXmlLib

8.5 Security Properties

1. AllowNvramReset
Type: plist boolean
Failsafe: false
Description: Allow CMD+0PT+P+R handling and enable showing NVRAM Reset entry in boot picker.

Note 1: 1t is known that some Lenovo laptops have a firmware bug, which makes them unbootable after
erforming NVRAM reset. See lacidanthera/bugtracker#995 for more details.

Note 2: Resetting NVRAM will also erase all the boot options otherwise not backed up with bless (e.g. Linux).

2. AllowSetDefault
Type: plist boolean
Failsafe: false
Description: Allow CTRL+Enter and CTRL+Index handling to set the default boot option in boot picker.

3. AuthRestart
Type: plist boolean
Failsafe: false
Description: Enable VirtualSMC-compatible authenticated restart.

Authenticated restart is a way to reboot FileVault 2 enabled macOS without entering the password. To perform
authenticated restart one can use a dedicated terminal command: sudo fdesetup authrestart. It is also used
when installing operating system updates.

VirtualSMC performs authenticated restart by saving disk encryption key split in NVRAM and RT'C, which
despite being removed as soon as OpenCore starts, may be considered a security risk and thus is optional.

35

https://github.com/acidanthera/bugtracker/issues/995

5. BootProtect
Type: plist string
Failsafe: None
Description: Attempt to provide bootloader persistence.

Valid values:

e None — do nothing.

e Bootstrap — create or update top-priority \EFI\OC\Bootstrap\Bootstrap.efi boot option (Boot9696)
in UEFT variable storage at bootloader startup. For this option to work RequestBootVarRouting is required
to be enabled.

This option provides integration with third-party operating system installation and upgrade at the times they
overwrite \EFI\BOOT\BOOTx64.efi file. By creating a custom option in Bootstrap mode this file path becomes
no longer used for bootstraping OpenCore.

Note 1: Some firmewares may have broken NVRAM, no boot option support, or various other incompatibilities
of any kind. While unlikely, the use of this option may even cause boot failure. Use at your own risk on boards
known to be compatible.

Note 2: Be warned that while NVRAM reset executed from OpenCore should not erase the boot option created
in Bootstrap, executing NVRAM reset prior to loading OpenCore will remove it.

6. ExposeSensitiveData
Type: plist integer
Failsafe: 0x6
Description: Sensitive data exposure bitmask (sum) to operating system.

e 0x01 — Expose printable booter path as an UEFI variable.

e 0x02 — Expose OpenCore version as an UEFI variable.

e 0x04 — Expose OpenCore version in boot picker menu title.
e 0x08 — Expose OEM information as a set of UEFI variables.

Exposed booter path points to OpenCore.efi or its booter depending on the load order. To obtain booter path
use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-path

To use booter path for mounting booter volume use the following command in macOS:

u=$(nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-path | sed 's/.*GPT,\([7,I1*\),.*/\1/'); \
if ["$u" !'= ""]; then sudo diskutil mount $u ; fi

To obtain OpenCore version use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:opencore-version

To obtain OEM information use the following commands in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:0em-product # SMBIOS Typel ProductName
nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:0em-vendor # SMBIOS Type2 Manufacturer
nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:0em-board # SMBIOS Type2 ProductName

7. HaltLevel
Type: plist integer, 64 bit
Failsafe: 0x80000000 (DEBUG_ERROR)
Description: EDK IT debug level bitmask (sum) causing CPU to halt (stop execution) after obtaining a message
of HaltLevel. Possible values match DisplayLevel values.

36

* 1 — enables print something to BOOTER.LOG (stripped code implies there may be a crash)

* 2 — enables perf logging to /efi/debug-log in the device three

* 4 — enables timestamp printing for styled printf calls

— level=VALUE — deprecated starting from 10.15. Verbosity level of DEBUG output. Everything but
0x80000000 is stripped from the binary, and this is the default value.

Note: To see verbose output from boot.efi on modern macOS versions enable AppleDebug option. This will
save the log to general OpenCore log. For versions before 10.15.4 set bootercfg to log=1. This will print verbose
output onscreen.
7C436110-AB2A-4BBB-A880-FE41995CI9F82:bootercfg-once
Booter arguments override removed after first launch. Otherwise equivalent to bootercfg.
7C436110-AB2A-4BBB-A880-FE41995C9F82:efiboot-perf-record
Enable performance log saving in boot.efi. Performance log is saved to physical memory and is pointed
by efiboot-perf-record-data and efiboot-perf-record-size variables. Starting from 10.15.4 it can also be
saved to OpenCore log by AppleDebug option.
7C436110-AB2A-4BBB-A880-FE41995C9F82 : fmm—computer-name
Current saved host name. ASCII string.
7C436110-AB2A-4BBB-A880-FE41995C9F82:nvda_drv
NVIDIA Web Driver control variable. Takes ASCII digit 1 or 0 to enable or disable installed driver.

7C436110-AB2A-4BBB-A880-FE41995C9F82: run-efi-updater
Override EFI firmware updating support in macOS (MultiUpdater, ThorUtil, and so on). Setting this to No

or alternative boolean-castable value will prevent any firmware updates in macOS starting with 10.10 at least.
7C436110-AB2A-4BBB-A880-FE41995C9F82:StartupMute

Mute startup chime sound in firmware audio support. 8-bit integer. The value of 0x00 means unmuted.
Missing variable or any other value means muted. This variable only affects Gibraltar machines (T2).
7C436110-AB2A-4BBB-A880-FE41995C9F82:SystemAudioVolume

System audio volume level for firmware audio support. 8-bit integer. The bit of 0x80 means muted. Lower bits are
used to encode volume range specific to installed audio codec. The value is capped by MaximumBootBeepVolume
AppleHDA layout value to avoid too loud audio playback in the firmware.

44

11.3 Tools

Standalone tools may help to debug firmware and hardware. Some of the known tools are listed below. While some
tools can be launched from within OpenCore many should be run separately either directly or from Shell.

To boot into OpenShell or any other tool directly save OpenShell.efi under the name of EFI\BOOT\BOOTX64.EFI on
a FAT32 partition. In general it is unimportant whether the partitition scheme is GPT or MBR.

While the previous approach works both on Macs and other computers, an alternative Mac-only approach to bless the
tool on an HFS+ or APFS volume:

sudo bless --verbose --file /Volumes/VOLNAME/DIR/OpenShell.efi \
--folder /Volumes/VOLNAME/DIR/ --setBoot

Listing 3: Blessing tool

Note 1: You may have to copy /System/Library/CoreServices/BridgeVersion.bin to /Volumes/VOLNAME/DIR.
Note 2: To be able to use bless you may have to|disable System Integrity Protectionl
Note 3: To be able to boot you may have to disable Secure Boot|if present.

Some of the known tools are listed below (builtin tools are marked with *):

BootKicker*® Enter Apple BootPicker menu (exclusive for Macs with compatible GPUs).

ChipTune™ Test BeepGen protocol and generate audio signals of different style and length.

CleanNvram* Reset NVRAM alternative bundled as a standalone tool.

GopStop™* Test GraphicsOutput protocol with a simple scenariol

HdaCodecDump™* Parse and dump High Definition Audio codec information (requires AudioDxe).

KeyTester™ Test keyboard input in SimpleText mode.

MemTest86 Memory testing utility.

OpenControl®* Unlock and lock back NVRAM protection for other tools to be able to get full NVRAM
access when launching from OpenCore.

OpenShell* OpenCore-configured UEFI Shell|for compatibility with a broad range of firmwares.

PavpProvision Perform EPID provisioning (requires certificate data configuration).

ResetSystem™ Utility to perform system reset. Takes reset type as an argument: ColdReset,
WarmResetFirmware, Shutdown, WarmReset. Defaults to ColdReset.

RtcRw* Utility to read and write RTC (CMOS) memory.

VerifyMsrE2* Check CFG Lock (MSR 0xE2 write protection) consistency across all cores.

11.4 OpenCanopy

OpenCanopy is a graphical OpenCore user interface that runs in External PickerMode and relies on |(OpenCorePkg
OcBootManagementLib similar to the builtin text interface.

OpenCanopy requires graphical resources located in Resources directory to run. Sample resources (fonts and images)
can be found in OcBinaryData repository.

OpenCanopy provides full support for PickerAttributes and offers a configurable builtin icon set. The default chosen
icon set depends on the DefaultBackgroundColor variable value. For Light Gray 01d icon set will be used, for other
colours — the one without a prefix.

Predefined icons are put to \EFI\OC\Resources\Image directory. Full list of supported icons (in .icns format) is
provided below. Missing optional icons will use the closest available icon. External entries will use Ext-prefixed icon if
available (e.g. 01dExtHardDrive.icns).

o Cursor — Mouse cursor (mandatory).

o Selected — Selected item (mandatory).
o Selector — Selecting item (mandatory).
o HardDrive — Generic OS (mandatory).
e Apple — Apple OS.

e AppleRecv — Apple Recovery OS.

o AppleTM — Apple Time Machine.

e Windows — Windows.

o Other — Custom entry (see Entries).

55

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://support.apple.com/HT208330
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg/tree/master/Application/GopStop
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://www.memtest86.com
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
http://github.com/tianocore/edk2
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OcBinaryData

11.7 APFS Properties

1.

EnableJumpstart

Type: plist boolean

Failsafe: false

Description: Load embedded APFS drivers from APFS containers.

APFS EFTI driver is bundled in all bootable APFS containers. This option performs loading of signed APFS
drivers with respect to ScanPolicy. See more details in “EFI Jumpstart” section of Apple File System Reference.

- GlobalConnect

Type: plist boolean

Description: Perform full device connection during APFS loading.

Instead of partition handle connection normally used for APFS driver loading every handle is connected recursively.
This may take more time than usual but can be the only way to access APFS partitions on some firmwares like
those found on older HP laptops.

HideVerbose

Type: plist boolean

Failsafe: false

Description: Hide verbose output from APFS driver.

APFS verbose output can be useful for debugging.

JumpstartHotPlug

Type: plist boolean

Failsafe: false

Description: Load APFS drivers for newly connected devices.

Performs APFS driver loading not only at OpenCore startup but also during boot picker. This permits APFS
USB hot plug. Disable if not required.

MinDate

Type: plist integer

Failsafe: 0

Description: Minimal allowed APFS driver date.

APFS driver date connects APFS driver with the calendar release date. Older versions of APFS drivers may
contain unpatched vulnerabilities, which can be used to inflict harm on your computer. This option permits
restricting APFS drivers to only recent releases.

e 0 — require the default supported release date of APFS in OpenCore. The default release date will increase
with time and thus this setting is recommended. Currently set to 2018/06/21.

e -1 — permit any release date to load (strongly discouraged).

o Other — use custom minimal APFS release date, e.g. 20200401 for 2020/04/01. APFS release dates can be
found in OpenCore boot log and 0cApfsLibl

MinVersion

Type: plist integer

Failsafe: 0

Description: Minimal allowed APFS driver version.

APFS driver version connects APFS driver with the macOS release. APFS drivers from older macOS releases will
become unsupported and thus may contain unpatched vulnerabilities, which can be used to inflict harm on your
computer. This option permits restricting APFS drivers to only modern macOS versions.

e 0 — require the default supported version of APFS in OpenCore. The default version will increase with
time and thus this setting is recommended. Currently set to the latest point release from High Sierra from
App Store (748077008000000).

e -1 — permit any version to load (strongly discouraged).

e Other — use custom minimal APFS version, e.g. 1412101001000000 from macOS Catalina 10.15.4. APFS
versions can be found in OpenCore boot log and OcApfsLibl

58

https://developer.apple.com/support/apple-file-system/Apple-File-System-Reference.pdf
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Library/OcApfsLib.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Library/OcApfsLib.h

Enabling this setting plays boot chime through builtin audio support. Volume level is determined by MinimumVolume
and VolumeAmplifier settings and SystemAudioVolume NVRAM variable.

Note: this setting is separate from StartupMute NVRAM variable to avoid conflicts when the firmware is able to
play boot chime.

7. VolumeAmplifier
Type: plist integer
Failsafe: 0
Description: Multiplication coefficient for system volume to raw volume linear translation from 0 to 1000.

Volume level range read from SystemAudioVolume varies depending on the codec. To transform read value in
[0, 127] range into raw volume range [0, 100] the read value is scaled to VolumeAmplifier percents:

SystemAudioV olume x VolumeAmpli fier
100

RawVolume = MIN(,100)

Note: the transformation used in macOS is not linear, but it is very close and this nuance is thus ignored.

11.9 Input Properties

1. KeyFiltering
Type: plist boolean
Failsafe: false
Description: Enable keyboard input sanity checking.

Apparently some boards like GA Z77P-D3 may return uninitialised data in EFI_INPUT_KEY with all input protocols.
This option discards keys that are neither ASCII, nor are defined in the UEFI specification (see tables 107 and
108 in version 2.8).

2. KeyForgetThreshold
Type: plist integer
Failsafe: 0
Description: Remove key unless it was submitted during this timeout in milliseconds.

AppleKeyMapAggregator protocol is supposed to contain a fixed length buffer of currently pressed keys. However,
the majority of the drivers only report key presses as interrupts and pressing and holding the key on the keyboard
results in subsequent submissions of this key with some defined time interval. As a result we use a timeout to
remove once pressed keys from the buffer once the timeout expires and no new submission of this key happened.

This option allows to set this timeout based on your platform. The recommended value that works on the majority
of the platforms is 5 milliseconds. For reference, holding one key on VMware will repeat it roughly every 2
milliseconds and the same value for APTIO V is 3-4 milliseconds. Thus it is possible to set a slightly lower value
on faster platforms and slightly higher value on slower platforms for more responsive input.

Note: Some platforms may require different values, higher or lower. For example, when detecting key misses in

try increasing this value (e.g. to 10), and when detecting key stall, try decreasing this value. Since
every platform is different it may be reasonable to check every value from 1 to 25.
3. KeyMergeThreshold
Type: plist integer
Failsafe: 0
Description: Assume simultaneous combination for keys submitted within this timeout in milliseconds.

Similarly to KeyForgetThreshold, this option works around the sequential nature of key submission. To be able
to recognise simultaneously pressed keys in the situation when all keys arrive sequentially, we are required to set
a timeout within which we assume the keys were pressed together.

Holding multiple keys results in reports every 2 and 1 milliseconds for VMware and APTIO V respectively.
Pressing keys one after the other results in delays of at least 6 and 10 milliseconds for the same platforms. The
recommended value for this option is 2 milliseconds, but it may be decreased for faster platforms and increased
for slower.

4. KeySupport
Type: plist boolean

60

UEFTI firmwares generally support ConsoleControl with two rendering modes: Graphics and Text. Some
firmwares do not support ConsoleControl and rendering modes. OpenCore and macOS expect text to only be
shown in Graphics mode and graphics to be drawn in any mode. Since this is not required by UEFT specification,
exact behaviour varies.

Valid values are combinations of text renderer and rendering mode:

e BuiltinGraphics — Switch to Graphics mode and use Builtin renderer with custom ConsoleControl.
e SystemGraphics — Switch to Graphics mode and use System renderer with custom ConsoleControl.

e SystemText — Switch to Text mode and use System renderer with custom ConsoleControl.

e SystemGeneric — Use System renderer with system ConsoleControl assuming it behaves correctly.

The use of BuiltinGraphics is generally straightforward. For most platforms it is necessary to enable
ProvideConsoleGop, set Resolution to Max.

The use of System protocols is more complicated. In general the preferred setting is SystemGraphics or
SystemText. Enabling ProvideConsoleGop, setting Resolution to Max, enabling ReplaceTabWithSpace is
useful on almost all platforms. SanitiseClearScreen, IgnoreTextInGraphics, and ClearScreenOnModeSwitch
are more specific, and their use depends on the firmware.

Note: Some Macs, namely MacPro5,1, may have broken console output with newer GPUs, and thus only
BuiltinGraphics may work for them.

. ConsoleMode

Type: plist string
Failsafe: Empty string
Description: Sets console output mode as specified with the WxH (e.g. 80x24) formatted string.

Set to empty string not to change console mode. Set to Max to try to use largest available console mode. Currently
Builtin text renderer supports only one console mode, so this option is ignored.

Note: This field is best to be left empty on most firmwares.

. Resolution

Type: plist string
Failsafe: Empty string
Description: Sets console output screen resolution.

o Set to WxH@Bpp (e.g. 1920x1080@32) or WxH (e.g. 1920x1080) formatted string to request custom resolution
from GOP if available.

e Set to empty string not to change screen resolution.

e Set to Max to try to use largest available screen resolution.

On HiDPI screens APPLE_VENDOR_VARIABLE_GUID UIScale NVRAM variable may need to be set to 02 to enable
HiDPI scaling in Builtin text renderer, FileVault 2 UEFI password interface, and boot screen logo. Refer to
Recommended Variables section for more details.

Note: This will fail when console handle has no GOP protocol. When the firmware does not provide it, it can be
added with ProvideConsoleGop set to true.

. ClearScreenOnModeSwitch

Type: plist boolean

Failsafe: false

Description: Some firmwares clear only part of screen when switching from graphics to text mode, leaving a
fragment of previously drawn image visible. This option fills the entire graphics screen with black eeter—colour
before switching to text mode.

Note: This option only applies to System renderer.

. DirectGopRendering

Type: plist boolean

Failsafe: false

Description: Use builtin graphics output protocol renderer for console.

62

11.

12.

13.

14.

15.

DeviceProperties

Type: plist boolean

Failsafe: false

Description: Reinstalls Device Property protocol with a builtin version. This will delete all previous properties
if it was already installed. This may be used to ensure full compatibility on VMs or legacy Macs.

FirmwareVolume

Type: plist boolean

Failsafe: false

Description: Forcibly wraps Firmware Volume protocols or installs new to support custom cursor images for
File Vault 2. Should be set to true to ensure File Vault 2 compatibility on everything but VMs and legacy Macs.

Note: Several virtual machines including VMware may have corrupted cursor image in HiDPI mode and thus
may also require this setting to be enabled.

HashServices

Type: plist boolean

Failsafe: false

Description: Forcibly reinstalls Hash Services protocols with builtin versions. Should be set to true to ensure
File Vault 2 compatibility on platforms providing broken SHA-1 hashing. Can be diagnosed by invalid cursor size
with UIScale set to 02, in general platforms prior to APTIO V (Haswell and older) are affected.

0SInfo

Type: plist boolean

Failsafe: false

Description: Forcibly reinstalls OS Info protocol with builtin versions. This protocol is generally used to receive
notifications from macOS bootloader, by the firmware or by other applications.

UnicodeCollation

Type: plist boolean

Failsafe: false

Description: Forcibly reinstalls unicode collation services with builtin version. Should be set to true to ensure
UEFT Shell compatibility on platforms providing broken unicode collation. In general legacy Insyde and APTIO
platforms on Ivy Bridge and earlier are affected.

11.12 Quirks Properties

1.

DeduplicateBootOrder

Type: plist boolean

Failsafe: false

Description: Remove duplicate entries in BootOrder variable in EFI_GLOBAL_VARIABLE_GUID.

This quirk requires RequestBootVarRouting to be enabled and therefore 0C_FIRMWARE_RUNTIME protocol imple-
mented in OpenRuntime.efi.

By redirecting Boot prefixed variables to a separate GUID namespace with the help of RequestBootVarRouting
quirk we achieve multiple goals:

e Operating systems are jailed and only controlled by OpenCore boot environment to enhance security.

¢ Operating systems do not mess with OpenCore boot priority, and guarantee fluent updates and hibernation
wakes for cases that require reboots with OpenCore in the middle.

o Potentially incompatible boot entries, such as macOS entries, are not deleted or anyhow corrupted.

However, some firmwares do their own boot option scanning upon startup by checking file presence on the available
disks. Quite often this scanning includes non-standard locations, such as Windows Bootloader paths. Normally it
is not an issue, but some firmwares, ASUS firmwares on APTIO V in particular, have bugs. For them scanning
is implemented improperly, and firmware preferences may get accidentally corrupted due to BootOrder entry
duplication (each option will be added twice) making it impossible to boot without eleaningresetting NVRAM.

To trigger the bug one should have some valid boot options (e.g. OpenCore) and then install Windows with
RequestBootVarRouting enabled. As Windows bootloader option will not be created by Windows installer, the
firmware will attempt to create it itself, and then corrupt its boot option list.

65

	Introduction
	Generic Terms

	Configuration Structure
	Contribution
	Misc
	Introduction
	Properties
	Boot Properties
	Security Properties

	Tools
	OpenCanopy
	APFS Properties
	Input Properties
	Quirks Properties

