Advanced Configuration and Power Interface

(ACPI) Introduction and Overview

Version 1.4 : 26 April 2016
Copyright © 2016 Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

This chapter provides a high-level overview of the Advanced Configuration and Power
Interface (ACPI). To make it easier to understand ACPI, this section focuses on broad and
general statements about ACPI and does not discuss every possible exception or detail
about ACPI. The rest of the the ACPI specification provides much greater detail about the
inner workings of ACPI than is discussed here, and is recommended reading for developers
using ACPI.

History of ACPI

ACPI was developed through collaboration between Intel, Microsoft*, Toshiba*, HP*, and
Phoenix* in the mid-1990s. Before the development of ACPI, operating systems (OS)
primarily used BIOS (Basic Input/Output System) interfaces for power management and
device discovery and configuration. This power management approach used the OS’s ability
to call the system BIOS natively for power management. The BIOS was also used to discover
system devices and load drivers based on probing input/output (I/O) and attempting to match
the correct driver to the correct device (plug and play). The location of devices could also be
hard coded within the BIOS because the platform itself was non-enumerable.

These solutions were problematic in three key ways. First, the behavior of OS applications
could be negatively affected by the BIOS-configured power management settings, causing
systems to go to sleep during presentations or other inconvenient times. Second, the power
management interface was proprietary on each system. This required developers to learn
how to configure power management for each individual system. Finally, the default settings
for various devices could also conflict with each other, causing devices to crash, behave
erratically, or become undiscoverable.

ACPI was developed to solve these problems and others.

What is ACPI?

ACPI can first be understood as an architecture-independent power management and
configuration framework that forms a subsystem within the host OS. This framework
establishes a hardware register set to define power states (sleep, hibernate, wake, etc). The
hardware register set can accommodate operations on dedicated hardware and general
purpose hardware.

The primary intention of the standard ACPI framework and the hardware register set is to
enable power management and system configuration without directly calling firmware natively
from the OS. ACPI serves as an interface layer between the system firmware (BIOS) and the
OS, as shown in Figure 1 and Figure 2, with certain restrictions and rules.

Operating System

The ACP! subsystem is an
interface layer between the
ACPI subsystem System firmware and the 0S.

c The arrows indicate data flow.

System firmware

Figure 1: ACPI overview

Fundamentally, ACPI defines two types of data structures which are shared between the
system firmware and the OS: data tables and definition blocks. These data structures are the
primary communication mechanism between the firmware and the OS. Data tables store raw
data and are consumed by device drivers. Definition blocks consist of byte code that is
executable by an interpreter.

The ACPI subsystem consists of
two types of data structures:
data tables and definition blocks.

05

Upon initialization, the AML
interpreter extracts the byte
code in the definition blocks as
enumerable ohjects.

v ¥ This collection of enumerable

AML interpreter ohjects forms the OS construct
called the ACPI namespace.

ACPl |namespace v

ACPI | subsystem

Data Tables Definition blocks

Objects can either have a
directly defined value or must be

evaluated and interpreted by
the AML interpreter.

The AML interpreter, directed by
the 0§, evaluates objects and

L] interfaces with system hardware
to perform necessary
operations.

System hardware

Figure 2: ACPI structure

This definition block byte code is compiled from the ACPI Source Language (ASL) code. ASL
is the language used to define ACPI objects and to write control methods. An ASL compiler
translates ASL into ACPI Machine Language (AML) byte code. AML is the language
processed by the ACPI AML interpreter, as shown in Figure 3.

ASL code ACPI Source Langauge (ASL) code is
used to define objects and control
methods.

L The ASL compiler translates ASL into

At1 il ACPI Machine Language (AML) byte
code contained within the ACPI
definition blocks.
Y

Definition block <38 ;
i L Definition blocks consist of an

. : identifying table header and byte
R code thatis executable by an AML
| interpreter.
[
J

AMLinterpreter

Figure 3: ASL and AML

The AML interpreter executes byte code and evaluates objects in the definition blocks to
allow the byte code to perform loop constructs, conditional evaluations, access defined
address spaces, and perform other operations that applications require. The AML interpreter
has read/write access to defined address spaces, including system memory, 1/O, PCI
configuration, and more. It accesses these address spaces by defining entry points called
objects. Objects can either have a directly defined value or else must be evaluated and
interpreted by the AML interpreter.

This collection of enumerable objects is an OS construct called the ACPI namespace. The
namespace is a hierarchical representation of the ACPI devices on a system. The system
bus is the root of enumeration for these ACPI devices. Devices that are enumerable on other
buses, like PCI or USB devices, are usually not enumerated in the namespace. Instead, their
own buses enumerate the devices and load their drivers. However, all enumerable buses
have an encoding technique that allows ACPI to encode the bus-specific addresses of the
devices so they can be found in ACPI, even though ACPI usually does not load drivers for
these devices.

Generally, devices that have a _HID object (hardware identification object) are enumerated
and have their drivers loaded by ACPI. Devices that have an _ADR object (physical address
object) are usually not enumerated by ACPI and generally do not have their drivers loaded by
ACPI. _ADR devices usually can perform all necessary functions without involving ACPI, but
in cases where the device driver cannot perform a function, or if the driver needs to
communicate to system firmware, ACPI can evaluate objects to perform the needed function.

As an example of this, PCI does not support native hotplug. However, PCI can use ACPI to
evaluate objects and define methods that allow ACPI to fill in the functions necessary to
perform hotplug on PCI.

An additional aspect of ACPI is a runtime model that handles any ACPI interrupt events that
occur during system operation. ACPI continues to evaluate objects as necessary to handle
these events. This interrupt-based runtime model is discussed in greater detail in the
Runtime model section below.

ACPI initialization

The best way to understand how ACPI works is chronologically. The moment the user
powers up the system, the system firmware completes its setup, initialization, and self tests.

System firmware updates the
ACPI tables as necessary with
System firmware information only available at
runtime before handing off
control to the boostrap loader.

¥ The XSDT is the first table used
XSDT by the 0OS’s ACPI subsystem and
contains the addresses of most

of the other ACPI tables on the
system.

v v v
FADT SSDTs ” Major ACPI tables H

The XSDT paoints to the FADT,
the S5DTs, and other major ACPI
tables.

Y The FADT directs the ACPI
subsystem to the DSDT, which is the
beginning of the namespace by
virtue of being the first table that
contains a definition block.

DSDT

v The ACPI subsystem then
consumes the DSDT and begins
building the ACPI namespace
from the definition blocks. The
XSDT also points to the SSDTs
and adds them to the
namespace.

ACPI namespace

Figure 4: ACPI initialization

The system firmware then uses information obtained during firmware initialization to update
the ACPI tables as necessary with various platform configurations and power interface data,
before passing control to the bootstrap loader. The extended root system description table
(XSDT) is the first table used by the ACPI subsystem and contains the addresses of most of
the other ACPI tables on the system. The XSDT points to the fixed ACPI description table
(FADT) as well as other major tables that the OS processes during initialization. After the OS
initializes, the FADT directs the ACPI subsystem to the differentiated system description table
(DSDT), which is the beginning of the namespace because it is the first table that contains a
definition block.

The ACPI subsystem then processes the DSDT and begins building the namespace from the
ACPI definition blocks. The XSDT also points to the secondary system description tables
(SSDTs) and adds them to the namespace. The ACPI data tables give the OS raw data
about the system hardware.

After the OS has built the namespace from the ACPI tables, it begins traversing the
namespace and loading device drivers for all the _HID devices it encounters in the
namespace.

Runtime model

After the system is up and running, ACPI works with the OS to handle any ACPI interrupt
events that occur via the ACPI system control interrupt (SCI) handler. This interrupt invokes
ACPI events in one of two general ways: fixed events and general purpose events (GPESs).
The SCI is multiplexed throughout the system to manage ACPI interrupt events.

Fixed events are ACPI events that have a predefined meaning in the ACPI specification.
These fixed events include actions like pressing the power button or ACPI timer overflows.
These events are handled directly by the OS handlers.

GPEs are ACPI events that are not predefined by the ACPI specification. These events are
usually handled by evaluating control methods, which are objects in the namespace and can
access system hardware. When the ACPI subsystem evaluates the control method with the
AML interpreter, the GPE object handles the events according to the OS’s implementation.
Typically this might involve issuing a notification to a device to invoke the device driver to
perform a function.

We discuss a generic example of this runtime model in the next section.

Thermal event example

ACPI includes a thermal model to allow systems to control the system temperature either
actively (by performing actions like turning a fan on) or passively by reducing the amount of
power the system uses (by performing actions like throttling the processor). We can use an
example of a generic thermal event shown in Figure 5 to demonstrate how the ACPI runtime
model works.

When the system initially finds a

Thermal zone [1] thermal zone [1] in the namespace,
{0 S Temperature and it loads the thermal zone handlerto
Example trip point : T
various trip points evaluate the thermal zone to
determine the temperature and trip
points.
¥
e e ErE When the temperature reachesa
2] trip point during runtime, a general

purpose event [2] occurs.

4 v
The thermal zone event causes an

5CI [3] interrupt via the ACPI system

5] control interrupt (SCI) [3]to occur.

When the OS receives the interrupt,

the handler searches the

Various ACPI namespace for the control method
objects object [4] corresponding to the GPE

interrupt. Upon finding it, the

handler evaluates that object.

ACPI namespace

Read temperature, turn on fans, reduce device The thermal zone handler then
performance, etc. takes whatever actions are
necessary to handle the event [5].

Figure 5: Runtime thermal event

The ACPI thermal zone includes control methods to read the current system temperature and
trip points.

1. When the OS initially finds a thermal zone in the namespace, it loads the thermal
zone driver, which evaluates the thermal zone to obtain the current temperature and
trip points.

2. When a system component heats up enough to trigger a trip point, a thermal zone
GPE occurs.

3. The GPE causes an interrupt via the SCI to occur. When the ACPI subsystem
receives the interrupt, it first checks whether any fixed events have occurred. In this
example, the thermal zone event is a GPE, so no fixed event has occurred.

4. The ACPI subsystem then searches the namespace for the control method that
matches the GPE number of the interrupt. Upon finding it, the ACPI subsystem
evaluates the control method, which might then access hardware and/or notify the
thermal zone handler.

5. The operating system’s thermal zone handler then takes whatever actions are
necessary to handle the event, including possibly accessing hardware.

ACPI is a very robust interface implementation. The thermal zone trip point could notify the
system to turn on a fan, reduce a device’s performance, read the temperature, shut down the
system, or any combination of these and other actions depending on the need.

This runtime model is used throughout the system to manage all of the ACPI events that
occur during system operation.

Summary

ACPI can best be described as a framework of concepts and interfaces that are implemented
to form a subsystem within the host OS. The ACPI tables, handlers, interpreter, namespace,
events, and interrupt model together form this implementation of ACPI, creating the ACPI
subsystem within the host OS. In this sense, ACPI is the interface between the system
hardware/firmware and the OS and OS applications for configuration and power
management. This gives various OS a standardized way to support power management and
configuration via the ACPI namespace.

The ACPI namespace is the enumerable, hierarchical representation of all ACPI devices on
the system and is used to both find and load drivers for ACPI devices on the system. The
namespace can be dynamic by evaluating objects and sending interrupts in real time, all
while restricting the OS from calling native system firmware code. This enables device
manufacturers to code their own instructions and events into devices. It also reduces
incompatibility and instability by implementing a standardized power management interface.

